当初怎么想的来着.....又忘了......

首先,总期望 = 每张卡片的期望之和

求期望,只要我们求出每张卡片被用掉的概率即可

如果直接上状态$f[i][j]$表示在第$i$轮中,第$j$张牌发动的概率

可以发现转移很困难......然而作死的我还是写了一个,$f[i][j] = \prod_{k = 1}^{j - 1} (1 - f[i][k])(1 - \sum\limits_{k = 1}^{i - 1} f[k][j])p[j]$

嗯.........复杂度$O(Tnr)$看起来很靠谱,然而由于存在大量前置状态的干扰,完全无法确定是不是正确的.......

所以还是换一种思路吧..............

可以发现,考虑一局游戏中一张牌发动的概率

那么,如果考虑每一局它发动的概率,那么这是一个“或”概率,肯定不好求

因此,我们考虑反面,每一局它都不发动的概率,求“与”概率

那么,对于牌$i$而言,它一局不发动的概率跟(有多少轮它可以选择发动与否)有关

也就是说,第$i$张牌不发动的概率跟前面有多少张牌发动了有关

因此,自然地设出状态$f[i][j]$表示前$i$张牌中,还有$j$张牌没有被打出的概率

转移很简单,考虑第$i $张牌有没有被发动

$f[i][j] += f[i - 1][j] *(1 - p[i])^j$(不发动)

$f[i][j] += f[i - 1][j + 1] * (1 - (1 - p[i])^{j + 1})$(发动)

最后求$i$的期望的时候,把所有的$f[i][j]$加权之后统计即可

即$E[i] = \sum\limits_{j = 1}^{r} f[i][j] * (1 - (1 - p[i]) ^ j) * v[i]$

注意预处理一下幂即可

复杂度$O(Tnr)$

#include <cstdio>
#include <cstring>
#define dl double
#define ri register int
#define sid 505
using namespace std; char c;
int n, m, T, d[sid];
dl ans;
dl p[sid], dp[sid][sid]; #define getchar() *S ++
char RR[], *S = RR;
inline int read() {
int p = ; c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') { p = p * + c - ''; c = getchar(); }
return p;
} inline dl dread() {
int p1 = read(); if(c != '.') return (dl)p1;
dl p2 = , p3 = 0.1; c = getchar();
while(c >= '' && c <= '')
p2 += (c - '') * p3, p3 *= 0.1, c = getchar();
return p2 + (dl)p1;
} int main() {
fread(RR, , sizeof(RR), stdin);
T = read();
for(ri t = ; t <= T; t ++) {
n = read(); m = read();
for(ri i = ; i <= n; i ++)
p[i] = dread(), d[i] = read(), p[i] = 1.0 - p[i];
ans = 0.0; p[] = 1.0;
dp[][m] = 1.0;
for(ri i = ; i <= n; i ++) {
dp[i][m + ] = ;
dl pi = p[i - ], pp = p[i - ];
dl np = p[i], tp = p[i];
for(ri j = ; j <= m; j ++) {
dp[i][j] = dp[i - ][j] * pp; pp *= pi;
dp[i][j] += dp[i - ][j + ] * (1.0 - pp);
ans += dp[i][j] * (1.0 - tp) * (dl)d[i];
tp *= np;
}
}
dp[][m] = 0.0;
printf("%.10lf\n", ans);
}
return ;
}

luoguP3239 [HNOI2015]亚瑟王 概率期望DP的更多相关文章

  1. BZOJ4008 : [HNOI2015]亚瑟王(期望dp)

    题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...

  2. 洛谷P3239 [HNOI2015]亚瑟王(期望dp)

    传送门 stdcall大佬好强 期望的姿势不是很高……据大佬说期望有一个线性性质,也就是说可以把每一张牌的期望伤害算出来然后再加起来就是总的期望伤害 因为每一张牌只能用一次,我们设$dp[i]$表示第 ...

  3. 洛谷 P3239 [HNOI2015]亚瑟王(期望+dp)

    题面传送门 感觉是道挺好的题,可惜当时没写题解来着的? 根据期望的线性公式,我们求出每个卡牌被发动的概率 \(q_i\),然后 \[ans=\sum\limits_{i=1}^np_id_i \] 于 ...

  4. bzoj4008: [HNOI2015]亚瑟王【期望dp】

    一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...

  5. 【洛谷3239_BZOJ4008】[HNOI2015] 亚瑟王(期望 DP)

    题目: 洛谷 3239 分析: 卡牌造成的伤害是互相独立的,所以 \(ans=\sum f_i\cdot d_i\) ,其中 \(f_i\) 表示第 \(i\) 张牌 在整局游戏中 发动技能的概率.那 ...

  6. P3239 [HNOI2015]亚瑟王——概率DP

    题面:亚瑟王 最近考试考期望很自闭啊,没做过这种类型的题,只能现在练一练: 所谓期望,就是状态乘上自己的概率:对于这道题来说,我们要求的是每张牌的伤害乘上打出的概率的和: 当然不是直接乘,因为给的是每 ...

  7. 【bzoj4008】[HNOI2015]亚瑟王 概率dp

    题目描述 $n$ 张牌,$r$ 轮游戏,每轮从左向右操作,遇到第 $i$ 张牌有 $p_i$ 的概率选中,选中会产生 $d_i$ 的贡献,丢弃掉该牌并结束这一轮,否则继续下一张.问最终的期望贡献. 输 ...

  8. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  9. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

随机推荐

  1. 通过jquery.validate.js校验表单字段是否合法

    <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...

  2. 【leetcode 简单】第四十题 求众数

    给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3] 输出: 3 ...

  3. 【leetcode 简单】第十一题 搜索插入位置

    给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引.如果目标值不存在于数组中,返回它将会被按顺序插入的位置. 你可以假设数组中无重复元素. 示例 1: 输入: [1,3,5,6], 5 输 ...

  4. Vue笔记之props验证

    使用props 在Vue中父组件向子组件中传送数据是通过props实现的,一个简单的使用props的例子: <!DOCTYPE html> <html> <head> ...

  5. python作业员工信息表程序(第四周)

    作业需求: 1. 员工信息表程序,实现增删改查操作: 2. 可进行模糊查询,语法至少支持下面3种: select name,age from staff_table where age > 22 ...

  6. 使用showplan.sql分析sql Performance

    在HelloDBA网站找到一个分析sql性能的工具-showplan,记录一下 showplan.sql下载路径:http://www.HelloDBA.com/Download/showplan.z ...

  7. 首次成功的web渗透

    web渗透 今天给大家讲一个最近做的一件令我振奋的一件事情 渗透培训刚刚结束的第二天 我在公网上挖到了我人生中的第一个站 总体来说个人真的很振奋人心      这个网站还没有进行更改但我已经通知了他们 ...

  8. 使用Git Wiki 管理文档时,文档编写的基本用法

    自己初次接触GitLab,通过百度和自己查找资料,了解了一部分.在自己的工作中,主要用到GitLab的Wiki文档版本管理能力.我总结了一小部分文本编辑需要用到的东西. 一.文本的排版 为了让文本/文 ...

  9. maven实战系列

    Maven实战(一)安装和配置 Maven实战(二)构建简单Maven项目 Maven实战(三)Eclipse构建Maven项目 Maven实战(四)生命周期 Maven实战(五)坐标详解 Maven ...

  10. Effective C++笔记(六):继承与面向对象设计

    参考:http://www.cnblogs.com/ronny/p/3756494.html 条款32:确定你的public继承塑模出is-a关系 “public继承”意味着is-a.适用于base ...