传送门

Description

在网友的国度中共有 \(n\) 种不同面额的货币,第 \(i\) 种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张。为了方便,我们把货币种数为 \(n\)、面额数组为 \(a[1..n]\) 的货币系统记作 \((n,a)\)。

在一个完善的货币系统中,每一个非负整数的金额 \(x\) 都应该可以被表示出,即对每一个非负整数 \(x\),都存在 \(n\) 个非负整数 \(t[i]\) 满足 \(a[i] \times t[i]\) 的和为 \(x\)。然而, 在网友的国度中,货币系统可能是不完善的,即可能存在金额 \(x\) 不能被该货币系统表示出。例如在货币系统 \(n=3\), \(a=[2,5,9]\) 中,金额 \(1,3\) 就无法被表示出来。

两个货币系统 \((n,a)\) 和 \((m,b)\) 是等价的,当且仅当对于任意非负整数 \(x\),它要么均可以被两个货币系统表出,要么不能被其中任何一个表出。

现在网友们打算简化一下货币系统。他们希望找到一个货币系统 \((m,b)\),满足 \((m,b)\) 与原来的货币系统 \((n,a)\) 等价,且 \(m\) 尽可能的小。他们希望你来协助完成这个艰巨的任务:找到最小的 \(m\)。

Input

输入文件的第一行包含一个整数 \(T\),表示数据的组数。

接下来按照如下格式分别给出 \(T\) 组数据。 每组数据的第一行包含一个正整数 \(n\)。接下来一行包含 \(n\) 个由空格隔开的正整数 \(a[i]\)。

Output

输出文件共有 \(T\) 行,对于每组数据,输出一行一个正整数,表示所有与 \((n,a)\) 等价的货币系统 \((m,b)\) 中,最小的 \(m\)。

Solution

我居然被这个题差点搞退役……

观察题目给的样例,发现选择的货币集合是原集合的一个子集。

考虑证明,使用反证法,假设被选择的集合中,\(k\)是最小的在原集合中没有出现的数。因为新集合的元素能表示的原集合一定能表示,所以原集合一定存在一组数使得他们能表示出\(k\)。那么将那组数作为\(k\),在后面可以表示\(k\)能表示出的所有数字,同时会比选择\(k\)少选择一个数,选择更优。证毕。

于是这道题选择的一定是原集合的一个子集。

考虑按照证明的思路,本题可以进一步转化为选择最少的数字拼出集合中的所有数字。这个操作可以通过完全背包实现:按照集合元素大小将元素从小到大排序,使用bool背包求出所有能被表示的数。在扫到第\(i\)个数字时,如果第\(i\)个数字不能被表示出,则将其选进集合中,使用它更新答案,否则跳过。

时间复杂度\(O(Tn\max\{a\})\)

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} namespace IO {
char buf[120];
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} const int maxn = 120;
const int maxt = 25010; int t;
int n;
int MU[maxn];
bool frog[maxt]; void clear(); int main() {
qr(t);
while(t--) {
clear();
qr(n);
for(rg int i=1;i<=n;++i) qr(MU[i]);
int ans=0;
std::sort(MU+1,MU+1+n);
frog[0]=true;
for(rg int i=1;i<=n;++i) if(!frog[MU[i]]) {
++ans;
for(rg int j=0;j<=MU[n];++j) if(frog[j]) {
int k=j+MU[i];
if(k <= MU[n]) frog[k]=true;
else break;
}
}
qw(ans,'\n',true);
}
return 0;
} void clear() {
n=0;
memset(MU,0,sizeof MU);
memset(frog,0,sizeof frog);
}

Summay

惨象,已使我目不忍视了。爆零,尤使我耳不忍闻。我还有什么话可说呢?沉默呵,沉默呵,不在沉默中爆发,就在沉默中灭亡。

【数学】【背包】【NOIP2018】P5020 货币系统的更多相关文章

  1. 背包 || NOIP 2018 D1 T2 || Luogu P5020 货币系统

    题面:P5020 货币系统 题解: 显然要求的货币系统是当前货币系统的子集时答案会更优,于是考虑从当前货币系统中删数 一个大数如果能被其他小数表示出来,它就可以去掉 把数据排个序去个重,然后直接背包 ...

  2. Luogu P5020 货币系统

    Luogu P5020 货币系统 先把$a$数组排一下序. 从最小的数开始选,显然最小这个数必须选,然后利用完全背包的思想,从$a_i$到最大值筛选一遍,将可以组成的打上标记. 在判断后面的数字时,如 ...

  3. P5020 货币系统

    P5020 货币系统 题解 仔细分析... 这道题其实就是求所给数组中有多少个数字不能被该数组中的数字自由组合表示出来 比如样例1 3,10 不能被该集合里的数字表示出来,所以他们组成目标集合 6=3 ...

  4. 洛谷 P5020 货币系统

    题目描述 在网友的国度中共有$ n $种不同面额的货币,第 i种货币的面额为 \(a[i]\),你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为\(n\).面额数组为 \(a[1..n]\ ...

  5. [NOIp2018] luogu P5020 货币系统

    还在补暑假作业. 题目描述 你有一个由 NNN 种面值的货币组成的货币系统.定义两个货币系统等价,当且仅当 ∀x∈N∗\forall x\in\N^*∀x∈N∗ 要么同时能被两个货币系统表示,要么同时 ...

  6. @NOIP2018 - D1T2@ 货币系统

    目录 @题目描述@ @题解@ @代码@ @题目描述@ 在网友的国度中共有 n 种不同面额的货币,第 i 种货币的面额为 a[i],你可以假设每一种货币都有无穷多张.为了方便,我们把货币种数为 n.面额 ...

  7. P5020 货币系统 题解

    原题链接 简要题意: 求一个长度最小的货币系统与给出的货币系统等价.求这个货币系统的长度.等价的定义详见题目,不再赘述. 本文可能用到一些集合论,请放心食用. 算法一 \(n=2\) 时,只需判断两个 ...

  8. NOIp2018 TG day1 T2暨洛谷P5020 货币系统:题解

    题目链接:https://www.luogu.org/problemnew/show/P5020 这道题感觉比较水啊,身为普及组蒟蒻都不费力的做出来了,而且数据范围应该还能大一些,n起码几万几十万都不 ...

  9. noip2018 洛谷 P5020 货币系统

    关键: 要使m最小,(m,b)中的数不能用(n,a)中的数表示出来 对于 3  19  10  6 19=10+3+3+3 6=3+3 只有3 和 10 不能被(n,a)中的数表示 所以m=2 只需要 ...

随机推荐

  1. mybatis按datetime条件查询,参数为时间戳时

    mybatis按datetime条件查询,参数为时间戳时,如果数据库为2018-1-1 20:22:10, 你的时间戳也为2018-1-1 20:22:10,但却没找到数据.可能是时差导致的.百度修正 ...

  2. 创建oracle数据表示例sql

    CREATE TABLE "BRAND_RELATION"    (        "ID" NUMBER(10,0) NOT NULL ENABLE,    ...

  3. phpcms v9手机站不支持组图($pictureurls)的修改

    phpcms v9自带的手机门户网站,有时候我们需要用到组图功能$pictureurls,我在做的时候发现,如果$pictureurls中只有一张图片会正常显示,但是如果有两张或两张以上的图片的时候, ...

  4. ubuntu10.10安装使用vnc

    原文发表于:2010-12-15转载至cu于:2012-07-21 搭安全试验的环境,在vmware上安装了ubuntu10.10(大学的时候用过,最早用的好像是6系列吧).安装好后想用远程桌面控制, ...

  5. 如何通俗理解贝叶斯推断与beta分布?

    有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完 ...

  6. Manacher算法——求最长回文子串

    首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...

  7. 2017软工第十周个人PSP

    11.17--11.23本周例行报告 1.PSP(personal software process )个人软件过程. C(类别) C(内容) ST(开始时间) ET(结束时间) INT(间隔时间) ...

  8. 强化学习之QLearning

    注:以下第一段代码是 文章 提供的代码,但是简书的代码粘贴下来不换行,所以我在这里贴了一遍.其原理在原文中也说得很明白了. 算个旅行商问题 基本介绍 戳 代码解释与来源 代码整个计算过程使用的以下公式 ...

  9. 线段树---no end

    额,还有 :区间操作,交,并,补等 区间合并 扫描线 这些问题有空再研究吧.... 先看j2ee了..... 传送门 版权声明:本文为博主原创文章,未经博主允许不得转载.

  10. 青岛 2016ICPC 区域现场赛题目

    A. Relic Discovery B. Pocket Cube C. Pocky D. Lucky Coins E. Fibonacci F. Lambda Calculus G. Coding ...