梯度下降(Gradient descent)
首先,我们继续上一篇文章中的例子,在这里我们增加一个特征,也即卧室数量,如下表格所示:
因为在上一篇中引入了一些符号,所以这里再次补充说明一下:
x‘s:在这里是一个二维的向量,例如:x1(i)第i间房子的大小(Living area),x2(i)表示的是第i间房子的卧室数量(bedrooms).
在我们设计算法的时候,选取哪些特征这个问题往往是取决于我们个人的,只要能对算法有利,尽量选取。
对于假设函数,这里我们用一个线性方程(在后面我们会说到运用更复杂的假设函数):hΘ(x) = Θ0+Θ1x1+Θ2x2
这里,θi为参数,也称为权值(weights)。我们假定x0 = 1。因此上述可以表示为矩阵形式:


梯度下降法是按下面的流程进行的:
1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。
2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。
如下图:
上图表示的是参数Θ和代价函数J(Θ)的关系图,深蓝色为全局最小,浅蓝色为局部最小,红色则表示J(Θ)有一个较大的取值,而梯度下降算法就是我们给定一个初始的Θ值,然后按照梯度下降的原则不断更新Θ值,使得J(Θ)向更低的方向进行移动。算法的结束将是在θ下降到无法继续下降为止。上面两条线代表我们给定两个初值,我们发现一条到达局部最小,即浅蓝色,而一条到达全局最小,即深蓝色。所以从这里我们可以看出,初始值的选择对梯度下降的影响很大。


如果 α 太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛, 下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果 α 太大,它会导致无法收敛,甚至发散。
批量梯度下降算法(batch gradient descent)



随机梯度下降算法(stochastic gradient descent)
当样本集数据量m很大时,由于每次在进行批量梯度下降时都需要用到所有的训练样本,所以开销就会很大,这个时候我们更多时候使用随机梯度下降算法(stochastic gradient descent),算法如下所示:
在进行随机梯度下降算法时,我们每次迭代都只选取一个训练样本,这样当我们迭代到若干样本的时候Θ就已经迭代到最优解了。
正规方程(The Normal equations)
梯度下降给我们提供了一种最小化J的方法,除了梯度下降,正规方程也是一种很好求解Θ的方法,这里只给出结论,如下
梯度下降(Gradient descent)的更多相关文章
- 机器学习(1)之梯度下降(gradient descent)
机器学习(1)之梯度下降(gradient descent) 题记:最近零碎的时间都在学习Andrew Ng的machine learning,因此就有了这些笔记. 梯度下降是线性回归的一种(Line ...
- 梯度下降(Gradient Descent)小结 -2017.7.20
在求解算法的模型函数时,常用到梯度下降(Gradient Descent)和最小二乘法,下面讨论梯度下降的线性模型(linear model). 1.问题引入 给定一组训练集合(training se ...
- 梯度下降(gradient descent)算法简介
梯度下降法是一个最优化算法,通常也称为最速下降法.最速下降法是求解无约束优化问题最简单和最古老的方法之一,虽然现在已经不具有实用性,但是许多有效算法都是以它为基础进行改进和修正而得到的.最速下降法是用 ...
- (二)深入梯度下降(Gradient Descent)算法
一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好. 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 ...
- CS229 2.深入梯度下降(Gradient Descent)算法
1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1),得到其最小化,下图中的×为y(i),下面给出TrainS ...
- 机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)
版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: ...
- 回归(regression)、梯度下降(gradient descent)
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇 ...
- 吴恩达深度学习:2.3梯度下降Gradient Descent
1.用梯度下降算法来训练或者学习训练集上的参数w和b,如下所示,第一行是logistic回归算法,第二行是成本函数J,它被定义为1/m的损失函数之和,损失函数可以衡量你的算法的效果,每一个训练样例都输 ...
- (3)梯度下降法Gradient Descent
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...
随机推荐
- 我也说说Emacs吧(3) - 文件基本操作
Spacemacs文件基本操作 有了前两讲的积累,我们知道了: 1. 我们既要学习emacs的操作,也要学习vi的操作 2. emacs是一个可扩展的平台,我们并不是从头配置,而是使用一套成熟的集成方 ...
- IE11降级到IE8
- apache 支持.htaccess重写url
1. httpd.conf 添加: <Directory /> Options +Indexes +FollowSymLinks +Multiviews AllowOverride all ...
- 哈工大LTP语言分析:分词、词性标注、句法分析等
1. LTP介绍和安装 LTP语言云官网 在线演示 | 语言云(语言技术平台云 LTP-Cloud) 安装LTP的python接口包 $ sudo pip install pyltp 模型文件下载 ...
- java数组实现简单的DVD管理
package com; import java.text.SimpleDateFormat; import java.util.Date; import java.util.Scanner; pub ...
- ubuntu创建Centos7镜像&&配置运行环境
1. 下载centos7镜像 sudo docker pull centos:7 2. 启动centos7容器并挂载本地目录 sudo docker -it -v /home/software:/ho ...
- 【剑指offer】n个骰子的点数,C++实现
# 题目 # 思路 # 代码
- JSON简介[转]
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. 易于人阅读和编写.同时也易于机器解析和生成. 它基于JavaScript Programming Lan ...
- 每天一个linux命令(性能、优化):【转载】free命令
free命令可以显示Linux系统中空闲的.已用的物理内存及swap内存,及被内核使用的buffer.在Linux系统监控的工具中,free命令是最经常使用的命令之一. 1.命令格式: free [参 ...
- bzoj 4811 由乃的OJ
bzoj 4811 由乃的OJ 考虑树链剖分. 树剖后用一颗线段树维护一段连续区间,类似于一个函数,各位上进入 \(0/1\) ,输出的数字分别是什么.注意到最多只有 \(64\) 位,可以用一个 \ ...