传送门

打麻将+1(雾

有顺子这种东西...注意到以某个位置为开头的顺子数量最多为2,那么有个想法就是枚举以每个位置为开头的顺子个数,然后每个位置的刻子的取法个数为\(\lceil\frac{\text{剩下的牌数}}{3}\rceil\),乘起来,然后每种情况的和就是答案

所以设\(f_{i,j,k}\)表示放到\(i\)牌,有\(j\)个\(i-1,i,i+1\)以及\(k\)个\(i,i+1,i+2\)的方案.转移枚举下一位放多少顺子(注意最后两个位置只能放0个),然后乘上刻子的取法个数进行转移,因为有些位置必须要用一些牌,所以方案应该改为(下面\(x\)为这一位用顺子消耗的牌数,\(a\)为这一位至少要用的牌数)$$\begin{cases}\lceil\frac{c-x}{3}\rceil&,x\ge a\\lceil\frac{c-(x+3 \lceil\frac{a-x}{3}\rceil)}{3}\rceil&,x< a\end{cases}$$

然后注意到\(n\)很大,并且很多位置都是随便用任意张牌,然后有限制的地方很少,所以有限制的地方以及最后两位暴力转移,剩下的地方矩乘转移

// luogu-judger-enable-o2
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double using namespace std;
const int N=1000+10,mod=998244353;
LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct matrix
{
int a[9][9];
matrix(){memset(a,0,sizeof(a));}
matrix operator * (const matrix &bb) const
{
matrix an;
for(int i=0;i<9;++i)
for(int j=0;j<9;++j)
{
LL nw=0;
for(int k=0;k<9;++k) nw+=1ll*a[i][k]*bb.a[k][j];
an.a[i][j]=nw%mod;
}
return an;
}
matrix operator ^ (const LL &bb) const
{
matrix an,a=*this;
for(int i=0;i<9;++i) an.a[i][i]=1;
LL b=bb;
while(b)
{
if(b&1) an=an*a;
a=a*a,b>>=1;
}
return an;
}
}aa,bb;
LL n,a[N][2];
int c,m,id[3][3],tmp[9]; int main()
{
n=rd(),c=rd(),m=rd();
for(int i=1;i<=m;++i) a[i][0]=rd(),a[i][1]=rd();
a[m+1][0]=n+1;
int ii=0;
aa.a[0][0]=1;
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
id[i][j]=i*3+j;
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
for(int k=0;k<3;++k)
bb.a[id[i][j]][id[j][k]]=max((c-i-j-k+3)/3,0);
for(;ii<=m;)
{
LL l=max(min(n-2,a[ii+1][0]-1)-(a[ii][0]+1)+1,0ll);
aa=aa*(bb^l);
++ii;
if(a[ii][0]>n-2) break;
memset(tmp,0,sizeof(tmp));
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
for(int k=0;k<3;++k)
{
int num=i+j+k<=a[ii][1]?i+j+k+(a[ii][1]-i-j-k+2)/3*3:i+j+k;
tmp[id[j][k]]=(tmp[id[j][k]]+1ll*aa.a[0][id[i][j]]*max((c-num+3)/3,0)%mod)%mod;
}
memcpy(aa.a[0],tmp,sizeof(tmp));
}
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
for(int k=1;k<3;++k)
bb.a[id[i][j]][id[j][k]]=0;
for(LL h=n-1;h<=n;++h,++ii)
{
while(h<=n&&h<a[ii][0]) aa=aa*bb,++h;
if(h>n) break;
memset(tmp,0,sizeof(tmp));
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
{
int num=i+j<=a[ii][1]?i+j+(a[ii][1]-i-j+2)/3*3:i+j;
tmp[id[j][0]]=(tmp[id[j][0]]+1ll*aa.a[0][id[i][j]]*max((c-num+3)/3,0)%mod)%mod;
}
memcpy(aa.a[0],tmp,sizeof(tmp));
}
printf("%d\n",aa.a[0][0]);
return 0;
}

luogu P5371 [SNOI2019]纸牌的更多相关文章

  1. Luogu 1031 - 均分纸牌 - [有意思的思维题]

    题目链接:https://www.luogu.org/problemnew/show/P1031 题目描述有 $N$ 堆纸牌,编号分别为 $1,2,…,N$.每堆上有若干张,但纸牌总数必为 $N$ 的 ...

  2. luogu P1031 均分纸牌

    题目很简单,但是可以学一学贪心策略 把纸牌均匀分布,从左往右推掉不用的纸牌 #include <iostream> using namespace std; int main() { in ...

  3. [SNOI2019]纸牌

    传送门 Description 有一副纸牌.牌一共有\(n\)种,分别标有 \(1,2,...,n\),每种有\(C\)张.故这副牌共有\(nC\)张. 三张连号的牌(\(i,i+1,i+2\))或三 ...

  4. Luogu P5330 [SNOI2019]数论

    题目 如果\(P>Q\)的话我们先交换一下\(P,Q\). 我们先枚举所有满足第一个条件的数,对于\(x\equiv a_i(mod\ P)\),设\(x=a_i+kP(k\in[0,\lflo ...

  5. luogu P5331 [SNOI2019]通信

    传送门 有匹配次数限制,求最小代价,这显然是个费用流的模型.每个点暴力和前面的点连匹配边,边数是\(n^2\)的. 然后发现可以转化成一个set,每次加入一个点,然后入点对set里面的出点连边.这个s ...

  6. luogu P5329 [SNOI2019]字符串

    传送门 显然要写一个排序,那只要考虑cmp函数怎么写就行了.第\(i\)个字符串和第 \(j\)个,首先前\(min(i,j)-1\)个字符是相同的,然后就是要比较后缀\(min(i,j)\)和\(m ...

  7. 【LOJ】#3098. 「SNOI2019」纸牌

    LOJ#3098. 「SNOI2019」纸牌 显然选三个以上的连续牌可以把他们拆分成三个三张相等的 于是可以压\((j,k)\)为有\(j\)个连续两个的,有\(k\)个连续一个的 如果当前有\(i\ ...

  8. Luogu P4016 负载平衡问题

    传说中的网络流24题之一,我刷的第二题菜. 据说这种东西做完了就可以有质的飞越?不过看着这些Luogu评级就有点蒙蔽. 首先我们看一下题目发现这不是均分纸牌的加强板吗,但是那个环的操作极大地限制了我的 ...

  9. 洛谷——P1031 均分纸牌

    https://www.luogu.org/problem/show?pid=1031#sub 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以 ...

随机推荐

  1. Contacts解析

    显示联系人相关类packages/apps/Contacts/src/com/android/contacts/activities/PeopleActivity.javapackages/apps/ ...

  2. 如何把java项目打包成war包

    用Eclipse手动打包 右击工程名 选择Export… 选择Web → WAR file 点击Browse,选择导出路径 然后war包就被导出来啦~是不是很简单呢 利用Maven的package命令 ...

  3. 2019java第十二周课程总结

    本周主要还是学习图形界面 各种容器使用方法 如下代码: package text10; import java.awt.*; import java.io.File; import javax.swi ...

  4. python3笔记十二:python数据类型-Dictionary字典

    一:学习内容 字典概念 字典创建 字典访问 字典添加 字典删除 字典遍历 字典与列表比较 二:字典概念 1.使用键值对(key-value)存储,具有极快的查找速度 2.注意:字典是无序的 3.特性: ...

  5. git设置mergetool可视化工具

      可以设置BeyondCompare,DiffMerge等作为git的比较和合并的可视化工具,方便操作. 设置如下: 先下载并安装BeyondCompare,DiffMerge等. 设置git配置, ...

  6. leetcode-easy-string- 8 String to Integer (atoi)

    mycode  98.26% 易错点: while循环式,and判断的地方先判断下标会不会超出范围 class Solution(object): def myAtoi(self, str): &qu ...

  7. accesstoken 中控服务器 并发刷新 加并发锁

    https://www.cnblogs.com/digdeep/p/4369725.html 由获取微信access_token引出的Java多线程并发问题 https://mp.weixin.qq. ...

  8. PLSQL导出表的数据insert语句

    “Where clause”可以设置查询条件.设置好文件导出的路径(“Output file”),点击[Export]按钮,就可以导出INSERT语句了. 导出之后使用nodepad打开: 但是如果我 ...

  9. Reactjs之静态路由、动态路由以及Get传值以及获取

    1.新增知识点 /* react路由的配置: 1.找到官方文档 https://reacttraining.com/react-router/web/example/basic 2.安装 cnpm i ...

  10. IPython基础使用_Round2

    目录 目录 前言 软件环境 Ipython的字符串处理 Ipython的魔力函数Magic lsmagic Output所有魔力函数 查看Magic的源码 env 显示系统环境变量 history 查 ...