P1034 矩形覆盖

题目描述

在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。

输入输出格式

输入格式:

n k xl y1 x2 y2 ... ...

xn yn (0<=xi,yi<=500)

输出格式:

输出至屏幕。格式为:

一个整数,即满足条件的最小的矩形面积之和。

输入输出样例

输入样例#1:

4 2
1 1
2 2
3 6
0 7
输出样例#1:

4

思路:

  dp

坑点:

  原来这题k<=3(据说这题数据很水~)

上代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int M = ;
int n,k,l,r;
int dp[M][M][]; struct D{
int x,y;
bool operator < (const D &qwq) const
{///按y大小进行排序
if(y!=qwq.y) return y < qwq.y;
return x < qwq.x;
}
}point[M]; int main()
{
//freopen("jxfg.in","r",stdin);
//freopen("jxfg.out","w",stdout);
memset(dp,0x3f,sizeof(dp));
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
scanf("%d%d",&point[i].x,&point[i].y);
sort(point+,point++n);
for(int i=;i<=n;i++)
{
l=r=point[i].x;
for(int j=i+;j<=n;j++)
{
l=min(l,point[j].x);
r=max(r,point[j].x);
dp[i][j][]=min(dp[i][j][],(point[j].y-point[i].y)*(r-l));
}
}
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int s=i+;s<j;s++)///mid
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int s=i+;s<j;s++)
dp[i][j][]=min(dp[i][j][],min((dp[i][s][]+dp[s+][j][]),(dp[i][s][]+dp[s+][j][])));
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int s=i+;s<j;s++)
{
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
}
printf("%d",dp[][n][k]);
return ;
}

 你以为这样就完了吗???

!!!

我们在cogs上提交发现:

!!!WA2点!!!

坑点:

  其实这里所讲的是暴力做法(WA纯属正常嘻嘻)

代码:(乱写加上了个特判的还是WA一个点的代码)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int M = ;
int n,k,l,r;
int dp[M][M][]; struct D{
int x,y;
bool operator < (const D &qwq) const
{///按y大小进行排序
if(y!=qwq.y) return y < qwq.y;
return x < qwq.x;
}
}point[M]; int main()
{
freopen("jxfg.in","r",stdin);
freopen("jxfg.out","w",stdout);
memset(dp,0x3f,sizeof(dp));
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
scanf("%d%d",&point[i].x,&point[i].y);
sort(point+,point++n);
for(int i=;i<=n;i++)
{
l=r=point[i].x;
for(int j=i+;j<=n;j++)
{
l=min(l,point[j].x);
r=max(r,point[j].x);
dp[i][j][]=(point[j].y-point[i].y)*(r-l);
}
}
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int s=i+;s<j;s++)///mid
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int s=i+;s<=n;s++)
dp[i][j][]=min(dp[i][j][],min((dp[i][s][]+dp[s+][j][]),(dp[i][s][]+dp[s+][j][])));
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int s=i+;s<=n;s++)
{
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
dp[i][j][]=min(dp[i][j][],dp[i][s][]+dp[s+][j][]);
}
if(dp[][n][k]==)
dp[][n][k]-=;
printf("%d",dp[][n][k]);
return ;
}

luoguP1034 矩形覆盖 x的更多相关文章

  1. [LuoguP1034][Noip2002] 矩形覆盖

    [LuoguP1034][Noip2002] 矩形覆盖(Link) 在平面上有\(N\)个点,\(N\)不超过五十, 要求将这\(N\)个点用\(K\)个矩形覆盖,\(k\)不超过\(4\),要求最小 ...

  2. 【OpenJudge 1793】矩形覆盖

    http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...

  3. NOIP2002矩形覆盖[几何DFS]

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  4. bzoj 1185 旋转卡壳 最小矩形覆盖

    题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...

  5. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

  6. NOIP2002 矩形覆盖

    题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2), ...

  7. UVA-11983-Weird Advertisement(线段树+扫描线)[求矩形覆盖K次以上的面积]

    题意: 求矩形覆盖K次以上的面积 分析: k很小,可以开K颗线段树,用sum[rt][i]来保存覆盖i次的区间和,K次以上全算K次 // File Name: 11983.cpp // Author: ...

  8. 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1945  Solve ...

  9. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

随机推荐

  1. python判断一个数是不是完全平方数

    思路: 完全平方数开根号后是一个整数,非完全平方数开根号的话是一个非整数 开根号后取整,如果开根号后是整数的话就不会改变值的大小 取整后再平方,如果值和之前一样,说明是完全平方数 import mat ...

  2. SQL SERVER 字符串函数 STUFF()

    说明: STUFF 函数将字符串插入到另一个字符串中. 它从第一个字符串的开始位置删除指定长度的字符:然后将第二个字符串插入到第一个字符串的开始位置. 语法: STUFF ( character_ex ...

  3. python函数 -- 作用域,异常处理

    1.def语句和参数 python定义函数的关键词为def,格式如下: def 函数名([变元],[变元],....)          #保存在变元中的值,在函数返回后该变元就会被销毁了. 2.返回 ...

  4. 像写SQL语句一样写Java代码

    @Data @AllArgsConstructor public class Trader { private final String name; private final String city ...

  5. 设计模式:门面模式(Facade)

      前面介绍的适配器模式讲的是如何将一个接口转换成客户所需要的另一个接口,它的目的在于 解决接口的不兼容性问题.现在这里有这样一个模式,它的目的在于如何简化接口,它可以将多个类的复杂的一切隐藏在背后, ...

  6. C++学习 之 类中的特殊函数和this指针(笔记)

    1.构造函数 构造函数是一种特殊的函数,它在对象被创建时被调用,与类同名无返回类型,可以被重载.构造函数的可以在类内实现也可以在类外实现. 构造函数的声明类似于下面的代码: class Human { ...

  7. C++练习 | 单链表的创建与输出(结构体格式)

    #include <iostream> #include <stdio.h> using namespace std; #define OK 1 #define ERROR 0 ...

  8. 版本控制器之SVN(二)

    安装重启以后,在菜单栏找到TortoiseSVN程序 启动以后 点击: 填写相应的信息: 可以看到项目的相关信息 选中仓库,右键 > Browse Repository 进入如下界面: 可以打开 ...

  9. windows下php配置环境变量

    这样重启终端后,通过php -v可查看新使用的php版本信息. 注:在path配置在上方的先生效

  10. laravel 5.7 引入Illuminate\Http\Request 在类内调用 Request 提示不存在的问题

    laravel报错: ReflectionException Class App\Http\Controllers\Request does not exist 解决办法: namespace App ...