1. 文法 G(S):

(1)S -> AB

(2)A ->Da|ε

(3)B -> cC

(4)C -> aADC |ε

(5)D -> b|ε

验证文法 G(S)是不是 LL(1)文法?

解:

  Select(A -> Da) = First(Da) = {b,a}

  Select(A -> ε) = (Follow(ε)-{ε})∪Follow(A) = {b,a,c,ε}

  Select(C -> aADC) = First(aADC) = {a}

  Select(C -> ε) = (Follow(ε)-{ε})∪Follow(C) = {ε}

  Select(D -> b) = First(b) = {b}

  Select(D -> ε) = (Follow(ε)-{ε})∪Follow(D) = {a,ε}

  ∵Select(A -> Da) ∩ Select(A -> ε) ≠ ∅

  ∴文法G(s)不是LL(1)文法。

2.(上次作业)消除左递归之后的表达式文法是否是LL(1)文法?

解:

消除左递归后:

  E -> TE'

  E' -> +TE' | ε

  T -> FT'

  T' -> *FT' | ε

  F -> (E) | i

SELECT(E' -> +TE') = FIRST(+TE') = {+}

SELECT(E' -> ε) = (FIRST(ε) - { ε }) U FOLLOW(E') = FOLLOW(E') = { ) , ε }

SELECT(T' -> *FT') = FRIST(*FT')={ * }

SELECT(T' -> ε) = (FIRST(ε) - { ε }) U FOLLOW(T') = FOLLOW(T') = { ε,+,) }

SELECT(F -> (E) ) = FIRST((E)) = { ( }

SELECT(F -> i) = FIRST(i) = { i }

∵SELECT(E' -> +TE') ∩ SELECT(E' -> ε) = ø

SELECT(T' -> *FT') ∩ SELECT(T' -> ε) = ø

SELECT(F -> (E) ) ∩ SELECT(F -> i) = ø

∴ 该文法是LL(1)文法。

3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。

E()

{T();

E'();

}

E'()

T()

T'()

F()

解:

void ParseE() {

  switch (lookahead) {

    case'(','i':

      ParseT();

      ParseE'();

      break;

    default:

      print("syntax error\n");

      exit(0);

  }

}

void ParseE'(){

  switch(lookahead){

    case '+':

      MatchToken('+');

      ParseT();

      ParseE'();

      break;

    case ')','#':

      break;

    default:

      print("syntax error\n");

      exit(0);

  }

}

void ParseT(){

  switch (lookahead) {

    case '(','i':

      ParseF();

      ParseT'();

      break;

    default:

      print("syntax error \n");

      exit(0);

  }

}

void ParseT'(){

  switch(lookahead){

    case '*':

      MatchToken('*');

      ParseF();

      ParseT'();

      break;

    case '+',')','#':

      break;

    default:

      print("syntax error \n");

      exit(0);

  }

}

void ParseF(){

  switch(lookahead){

    case '(':

      MatchToken('(');

      ParseE();

      MatchToken(')');

      break;

    case 'i':

      MatchToken('i');

      break;

    default:

      print("syntax error \n");

      exit(0);

  }

}

 4.加上实验一的词法分析程序,形成可运行的语法分析程序,分析任意输入的符号串是不是合法的表达式。

第十一次 LL(1)文法的判断,递归下降分析程序的更多相关文章

  1. 作业十一——LL(1)文法的判断,递归下降分析程序

    作业十一——LL(1)文法的判断,递归下降分析程序 判断是否为LL(1)文法 选取有多个产生式的求select,只有一条产生式的无需求select 同一个非终结符之间求交集,全部判断为空后则为LL(1 ...

  2. 十一次作业——LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  3. 第十一次作业 LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  4. 编译原理之LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  5. LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da | ε (3)B -> cC (4)C -> aADC | ε (5)D -> b | ε 验证文法 G ...

  6. 编译原理:LL(1)文法的判断,递归下降分析程序

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  7. LL(1)文法--递归下降程序

    递归下降程序 递归下降程序一般是针对某一个文法的.而递归下降的预测分析是为每一个非终结符号写一个分析过程,由于文法本身是递归的,所以这些过程也是递归的. 以上是前提. Sample 假如给的是正规式子 ...

  8. 作业十一——LL(1)文法的判断

    1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...

  9. 小程序内嵌H5页面判断微信及小程序环境

    判断微信及小程序环境 1.H5页面引入jweixin-1.3.2.js 2. var ua = window.navigator.userAgent.toLowerCase(); if(ua.matc ...

随机推荐

  1. js保留两位小数,自动补充零

    function returnFloat(value){  var value=Math.round(parseFloat(value)*100)/100;  var xsd=value.toStri ...

  2. 【leetcode】926.Flip String to Monotone Increasing

    题目如下: A string of '0's and '1's is monotone increasing if it consists of some number of '0's (possib ...

  3. 揭秘阿里云WAF背后神秘的AI智能防御体系

    背景 应用安全领域,各类攻击长久以来都危害着互联网上的应用,在web应用安全风险中,各类注入.跨站等攻击仍然占据着较前的位置.WAF(Web应用防火墙)正是为防御和阻断这类攻击而存在,也正是这些针对W ...

  4. Database基础(七):部署集群基础环境、MySQL-MMM架构部署、MySQL-MMM架构使用

    一.部署集群基础环境 目标: 本案例要求为MySQL集群准备基础环境,完成以下任务操作: 数据库授权 部署MySQL双主多从结构 配置本机hosts解析记录 方案: 使用4台RHEL 6虚拟机,如下图 ...

  5. 微信公众号的SpringBoot+Quartz的定时任务Demo

    SpringBoot整合quartz并不难,难在普通类实现了Job接口后等于实例化交给quartz,不受Spring管理,则service层等等其他依赖的注入将无法注入,这也是难点之一. 解决方法: ...

  6. Webx.0-Web3.0:Web3.0

    ylbtech-Webx.0-Web3.0:Web3.0 Web3.0只是由业内人员制造出来的概念词语,最常见的解释是,网站内的信息可以直接和其他网站相关信息进行交互,能通过第三方信息平台同时对多家网 ...

  7. Spring Boot 报错记录

    Spring Boot 报错记录 由于新建的项目没有配置数据库连接启动报错,可以通过取消自动数据源自动配置来解决 解决方案1: @SpringBootApplication(exclude = Dat ...

  8. windbg bp condition

    0:000> bp 0012f2fc "j @ecx == 0 '';'gc'" 0:000> g j代表judgement,与c++中的condition?A:B类似 ...

  9. 时间同步服务器NTP

    NTP服务器        NTP(Network Time Protocol)[网络时间协议],它是用来同步网络中各个计算机的时间的协议,它可以提供高精准度的时间校正(LAN上与标准间差小于1毫秒, ...

  10. leetcode.矩阵.378有序矩阵中第K小的元素-Java

    1. 具体题目 给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第k小的元素.请注意,它是排序后的第k小元素,而不是第k个元素. 示例: matrix = [ [ 1,  5, ...