[bzoj3462]DZY Loves Math II (美妙数学+背包dp)
Description

Input
第一行,两个正整数 S 和 q,q 表示询问数量。
接下来 q 行,每行一个正整数 n。
Output
输出共 q 行,分别为每个询问的答案。
Sample Input
9
29
1000000000000000000
Sample Output
9
450000036
HINT
感谢the Loser协助更正数据
对于100%的数据,2<=S<=2*10^6,1<=n<=10^18,1<=q<=10^5
这个题面让人很费解啊
其实题意还是挺简洁的
首先对S分解质因数
如果有相同的因数出现了多次,那么$lcm(p_1,p_2,p_3...p_k)=S$一定不能被满足
此时直接特判输出Q个0即可
(这10分这么好拿还想什么正解hhh)
接下来要做的,是取一定数量的每个$p_i$,使他们的和为$n$
假设$n=\sum{p_i*c_i}$,即$p_i$对应取$c_i$个
由$p_i$是S的因数,可得$p_i*c_i$一定可以表示成$X*S+Y*p_i$
将$p_i$除过去,得到$c_i=X*\frac{S}{p_i}+Y$
那么就可以把$c_i$分成+号前后两部分,不同的$X$和不同的$Y$都会导致方案不同
设前半部分为$a_i$,后半部分为$b_i$
将$c_i\ mod\ \frac{S}{p_i}$得到后半部分,这部分的方案数用多重背包解决
则背包大小不超过$k*S$(每个物品不超过$\frac{S}{p_i}$),
之后我们考虑$a_i$部分,分配每一个$X$等价于将$\frac{S}{p_i}$个物品放到k个盒子内(可空),
利用隔板法得到方案数为$C_{\frac{S}{p_i}+k-1}^{k-1}$
直接打表求k范围内的阶乘逆元,暴力求排列再$*(m-1)$的阶乘逆元即可
$a_i\ b_i$的贡献是相对独立的,所以可以直接相乘
但这样可能包含了几倍的S,
而通过枚举一个倍数m( $p_1*b_1+p_2*b_2+...+p_k*b_k=n-m*S$ )即可得到结果
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
const int N=;
const ll mod=1e9+;
int S,Q,tot=,sumf;
int fact[];
int sz,f[],g[],mu[],pr[];
bool v[];
ll n,side,inv[],fac[];
void dp()
{
f[]=;
for(int i=;i<=sz;i++)
{
for(int j=;j<fact[i];j++)
{
ll tmp=;
for(int k=j;k<=side;k+=fact[i])
{
tmp=(f[k]+tmp)%mod;
if(k>=S)tmp=(tmp-f[k-S])%mod;
g[k]=tmp;
}
}
for(ll j=;j<=side;j++)f[j]=g[j];
}
}
ll qpow(ll a,ll b)
{
ll res=;
for( ;b;b>>=,a=a*a%mod)
if(b&)res=res*a%mod;
return res;
}
ll C(ll x,ll y)
{
ll res=;
for(ll i=x;i>=x-y+;i--)res=res%mod*(i%mod)%mod;
res=res%mod*(inv[y]%mod)%mod;
return res;
}
void prime()
{
mu[]=;int num=;
for(int i=;i<=S;i++)
{
if(!v[i])pr[++num]=i,mu[i]=-;
for(int j=;j<=num;j++)
{
if(i*pr[j]>S)break;
v[i*pr[j]]=;
if(i%pr[j])mu[i*pr[j]]=-mu[i];
else
{
mu[i*pr[j]]=;
break;
}
}
}
for(int i=;i<=num;i++)
if(S%pr[i]==)fact[++sz]=pr[i],sumf+=pr[i];
}
int main()
{
scanf("%d%d",&S,&Q);
prime();
if(!mu[S])
{
while(Q--)puts("");
return ;
}
side=S*sz;
inv[]=fac[]=;
for(ll i=;i<=sz;i++)
fac[i]=fac[i-]*i%mod;
inv[sz]=qpow(fac[sz],mod-);
for(int i=sz-;i;i--)
inv[i]=inv[i+]*(i+)%mod;
dp();
while(Q--)
{
scanf("%lld",&n);
if(n<sumf)
{
puts("");
continue ;
}
n-=sumf;
ll tm=n/S,ans=;
for(ll i=;i<=sz;i++)
{
if(n-i*S<)break;
ll now=i*S+n%S;
if(now>side)continue;
ans=(ans+(ll)f[now]*C(tm-i+sz-,sz-))%mod;
}
printf("%lld\n",(ans+mod)%mod);
}
return ;
}
[bzoj3462]DZY Loves Math II (美妙数学+背包dp)的更多相关文章
- BZOJ3462 DZY Loves Math II 【多重背包 + 组合数】
题目 输入格式 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. 输出格式 输出共 q 行,分别为每个询问的答案. 输入样例 30 3 9 29 1000000 ...
- BZOJ3462 DZY Loves Math II(动态规划+组合数学)
容易发现这是一个有各种玄妙性质的完全背包计数. 对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x.那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组 ...
- bzoj3462: DZY Loves Math II
状态很差脑子不清醒了,柿子一直在推错.... ... 不难发现这个题实际上是一个完全背包 问题在于n太大了,相应的有质数的数量不会超过7个 假设要求sigema(1~plen)i pi*ci=n 的方 ...
- bzoj 3462: DZY Loves Math II
3462: DZY Loves Math II Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 211 Solved: 103[Submit][Sta ...
- DZY Loves Math II:多重背包dp+组合数
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...
- BZOJ 3462 DZY Loves Math II ——动态规划 组合数
好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划 ...
- DZY Loves Math II
简要题面 对于正整数 \(S, n\),求满足如下条件的素数数列 \((p_1,p_2,\cdots,p_k)\)(\(k\) 为任意正整数) 的个数: \(p_1\le p_2\le\cdots\l ...
- DZY Loves Math系列
link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...
- [BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...
随机推荐
- Python笔记(十八)_私有属性、实例属性、类属性
私有属性 如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,就变成了一个私有属性,只有内部可以访问,外部不能直接访问或修改. 这样就确保了外部代码不能随意修改对象内部的状态,这样通过 ...
- 【FICO系列】SAP FICO模块-财务账期的打开和关闭
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FICO系列]SAP FICO模块-财务账期的 ...
- 让 Visio 2003/2007 同时开多个独立窗口
1. 打开 Visio 2003/2007 2. 点击菜单[工具] -> [选项]: 3. 在弹出的“选项” 对话框中选择“高级”选项页: 4. 去掉“在同一窗口中打开每一 ShapeSheet ...
- php有几种开发语言
php有几种开发语言? php的启发语言有五种,分别是C.Perl.Java.C++.Python. PHP(全称:PHP:Hypertext Preprocessor,即“PHP:超文本预处理器”) ...
- 05 - Jmeter连接多台电脑做压力测试
在使用Jmeter进行接口的性能测试时, 由于Jmeter是JAVA应用, 对于CPU的内存消耗比较大, 所以, 当需要模拟数以万计的的并发用户时, 使用单台机器模拟所有用户并发就会有些力不从心了, ...
- Java常见问题收集
转载处:https://blog.csdn.net/jackfrued/article/details/44921941 1.面向对象的特征有哪些方面? 答:面向对象的特征主要有以下几个方面: - 抽 ...
- [BZOJ 4771]七彩树(可持久化线段树+树上差分)
[BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...
- hdu5943 Kingdom of Obsession 二分图+打表找规律
题目传送门 Kingdom of Obsession Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Ja ...
- ecshop 广告调用的几种方式
1,ECSHOP后台设置广告更换 前台调用 {insert name='ads' id=2 num=1} id值表达广告位置的id.num表示数量 2,在代码加函数 function getads($ ...
- 请列举出JS对象的几种创建方式?
javascript创建对象简单的说,无非就是使用内置对象或各种自定义对象,当然还可以用JSON:但写法有很多种,也能混合使用. 1.对象字面量的方式 var person={firstname:&q ...