[codeforces743C]:Vladik and fractions(数学)
题目传送门
题目描述
请找出一组合法解使得$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{n}$成立。
其中$x,y,z$为正整数且互不相同。
输入格式
一个整数$n$。
输出格式
一组合法的解$x,y,z$,用空格隔开。
若不存在合法的解,输出“-1”。
样例
样例输入
2
样例输出
2 3 6
数据范围与提示
对于$100%$的数据满足$n\leqslant {10}^4$
要求答案中$x,y,z\leqslant 2\times {10}^9$
提供$Special Judge$
题解
如果你看到了这里,说明你比我还菜。
毕竟我样例都给你了……
找规律也该找出来了……
你可定会$\Theta(n^3)$的暴力。
稍加思考会发现可以根据$x,y$推出$z$,$\Theta(n^2)$就出来了。
但是数据范围显然是让我们$\Theta(1)$(虽说原题$n\leqslant {10}^4$)。
你真的菜,读到这里还想不到$\Theta(1)$。。。
好吧,那我就告诉你,毕竟我发现了比我还菜的人……
有这样一个式子:$\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\times (n+1)}$。
那么我们移个项:$\frac{1}{n\times (n+1)}+\frac{1}{n+1}-\frac{1}{n}=0$。
两边同时加$\frac{2}{n}$:$\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n\times (n+1)}=\frac{2}{n}$。
那么我们让$x=n,y=n+1,z=n\times (n+1)$就好啦……
看到这里,是不是觉得自己是智障?
停!!!
不要轻生!!!
笔者概不负责!!!
代码时刻
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long n;
scanf("%lld",&n);
if(n==1||n==0)puts("-1");
else printf("%lld %lld %lld",n,n+1,n*n+n);
return 0;
}
rp++
[codeforces743C]:Vladik and fractions(数学)的更多相关文章
- Codeforces Round #384 (Div. 2) C. Vladik and fractions 构造题
C. Vladik and fractions 题目链接 http://codeforces.com/contest/743/problem/C 题面 Vladik and Chloe decided ...
- Codeforces 743C - Vladik and fractions (构造)
Codeforces Round #384 (Div. 2) 题目链接:Vladik and fractions Vladik and Chloe decided to determine who o ...
- 数学【CF743C】Vladik and fractions
Description 请找出一组合法的解使得\(\frac {1}{x} + \frac{1}{y} + \frac {1}{z} = \frac {2}{n}\)成立 其中\(x,y,z\)为正整 ...
- Codeforces Round #384 (Div. 2) C. Vladik and fractions(构造题)
传送门 Description Vladik and Chloe decided to determine who of them is better at math. Vladik claimed ...
- 【44.64%】【codeforces 743C】Vladik and fractions
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- vjudge I - Vladik and fractions 一道小学生的提。
原题链接:https://vjudge.net/contest/331993#problem/I Vladik and Chloe decided to determine who of them i ...
- CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)
ACM思维题训练集合 To confuse the opponents, the Galactic Empire represents fractions in an unusual format. ...
- CodeForces 743C Vladik and fractions (数论)
题意:给定n,求三个不同的数满足,2/n = 1/x + 1/y + 1/z. 析:首先1是没有解的,然后其他解都可以这样来表示 1/n, 1/(n+1), 1/(n*(n+1)),这三个解. 代码如 ...
- CF C. Vladik and fractions——构造题
题目 构造一组 $x, y, z$,使得对于给定的 $n$,满足 $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{2}{n}$. 分析: 样例二已 ...
随机推荐
- 方便测试和调用webservice的工具(转)
现在很多时候我们都会遇到这种情况:自己开发的程序要和其他各种各样的程序进行接口数据交互,这里就用到常用的接口服务的调用,但是有时候为了进行方便的测试,我们可能会写许多测试类等来测试,这样浪费了时间,也 ...
- Nginx代理自动上线下线
Nginx基于连接探测,如果发现后端异常,在单位周期为fail_timeout设置的时间,中达到max_fails次数,这个周期次数内,如果后端同一个节点不可用,那么接将把节点标记为不可用,并等待下一 ...
- java学习day1
一.常用的DOS命令 1.打开cmd 窗口键+r --> 输入cmd --> 确认 2.常用的dos命令 dir:列出当前目录下的所有文件及文件夹 md:创建一个新的目录 rd:删除目录 ...
- Java中的四种权限修饰符
权限修饰符 public protected [default] private 同一个类 YES YES YES YES 同一个包 YES YES YES NO 不同包子类 YES YES NO ...
- HNUSTOJ-1690 千纸鹤
1690: 千纸鹤 时间限制: 1 Sec 内存限制: 128 MB提交: 992 解决: 296[提交][状态][讨论版] 题目描述 圣诞节快到了,校园里到处弥漫着粉红色的气息.又是一个情侣秀 ...
- 6-3 如何解析简单的XML文档
元素节点.元素树 >>> from xml.etree.ElementTree import parse >>> help(parse) Help on funct ...
- TMS320F28335——下载程序到flash中
一.让CCS软件支持Flash烧写 添加F28335.cmd文件 如图屏蔽掉25335_RAM_lnk.cmd 2.支持从Flash中拷贝文件到RAM中 添加DSP2832x_MemCopy.c 在主 ...
- 给Repeater增加button事件,并绑定值
ASPX页面: 增加两个事件,及传值. 1<asp:Repeater ID="rptList" OnItemDataBound="rptList_ItemDataB ...
- application详解
Application对象是HttpApplicationState类的一个实例,Application状态是整个应用程序全局的.本文主要详细介绍Application对象的用法. 一.全局应用程序类 ...
- python学习笔记(4)
第六章 字符串操作 1.字符串处理 (1)字符串字 spam='Say hi to Bob\' s mother 面量 python中输入字符串:以单引号开始和结束 (2)双引号:字符串可以用双引号开 ...