题目:

Error Curves

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1151    Accepted Submission(s): 440

Problem Description
Josephina is a clever girl and addicted to Machine Learning recently. She
pays much attention to a method called Linear Discriminant Analysis, which
has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets.
What's more, each data is divided into two parts: training data and test
data. She gets the parameters of the model on training data and test the
model on test data. To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimum which related to multiple quadric functions. The new function F(x) is defined as follows: F(x) = max(Si(x)), i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function. Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

 
Input
The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n (n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
 
Output
For each test case, output the answer in a line. Round to 4 digits after the decimal point.
 
Sample Input
2
1
2 0 0
2
2 0 0
2 -4 2
 
Sample Output
0.0000
0.5000

题意:

这题给n个二项式,定义F(x)为x在(0,1000)这个范围内的所有二项式的最大值,求F(x)的最小值。

#include<iostream>
#include<cstdio>
#include<cmath>
#define N 1e-15
using namespace std;
const int MAXN=;
int t,n;
int a[MAXN],b[MAXN],c[MAXN];
double hanshu(double x)
{
double y=a[]*x*x+b[]*x+c[];
for(int i=;i<n;i++)
y=max(y,a[i]*x*x+b[i]*x+c[i]);
return y;
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d%d%d",&a[i],&b[i],&c[i]);
double left=,right=;
double mid1,mid2;
while(left+N<right)
{
mid1=(left+right)/;
mid2=(right+mid1)/;
if(hanshu(mid1)>hanshu(mid2))
left=mid1;
else right=mid2;
}
double z=hanshu(right);
printf("%.4lf\n",z);
}
return ;
}

hdu3714 Error Curves的更多相关文章

  1. HDU-3714 Error Curves(凸函数求极值)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  2. HDU3714 Error Curves (单峰函数)

    大意: 给你n个二次函数Si(x),F(x) = max{Si(x)} 求F(x)在[0,1000]上的最小值. S(x)=ax^2+bx+c       (0<=a<=100, |b|, ...

  3. Error Curves(2010成都现场赛题)

    F - Error Curves Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Descript ...

  4. 【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves

    Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...

  5. Error Curves HDU - 3714

    Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...

  6. UVA 5009 Error Curves

    Problem Description Josephina is a clever girl and addicted to Machine Learning recently. She pays m ...

  7. LA 5009 (HDU 3714) Error Curves (三分)

    Error Curves Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu SubmitStatusPr ...

  8. hdu 3714 Error Curves(三分)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  9. HDU 3714/UVA1476 Error Curves

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. supervisor启动elk7.4.0组件

    es [program:elasticsearch] command = /srv/app/elk/elasticsearch/bin/elasticsearch autostart = true s ...

  2. JDK,JRE,JVM的区别与联系?

    概念区别 JDK:           Java Develpment Kit java 开发工具JRE:         Java Runtime Environment java运行时环境JVM: ...

  3. python 并发编程 查看进程的id pid与父进程id ppid

    查看进程id pid 不需要传参数 from multiprocessing import Process import time import os def task(): print(" ...

  4. Java第二周总结

    一.Java 基础程序设计 第一章: (1)在Java中源文件的扩展名为.java,编译Java源程序文件产生相应的字节码文件扩展名为.class (2)public class定义要求类名称保持一致 ...

  5. [转帖]TLS握手:回顾1.2、迎接1.3

    TLS握手:回顾1.2.迎接1.3 novsec2019-05-10共26541人围观 ,发现 2 个不明物体网络安全 *本文原创作者:novsec,本文属于FreeBuf原创奖励计划,未经许可禁止转 ...

  6. 使用autotools自动生成Makefile并在此之上使用dh-make生成可发布的deb程序包(详解)

    转自:http://blog.csdn.net/longerzone/article/details/12705507 一.前言 本文将介绍如何使用autotools生成一个Makefile文件,并在 ...

  7. Quartz.NET | 佳佳的博客

    原文:Quartz.NET | 佳佳的博客 Quartz.NET 是一个定时计划任务的框架,支持 .NET Core. 本文示例代码大部分来自于官方教程:Quartz.NET - Quartz.NET ...

  8. Fusioncharts图表常用参数设置

    1.1 <chart>参数设置: 图表和轴的标题* caption=”String” : 图表上方的标题* subCaption=”String” : 图表上方的副标题* xAxisNam ...

  9. jQuery实现动态时间

    <!DOCTYPE html> <html lang="zh-cn"> <head> <meta charset="UTF-8& ...

  10. socket参数的详解

    socket参数的详解 socket.socket(family=AF_INET,type=SOCK_STREAM,proto=0,fileno=None) 创建socket对象的参数说明: fami ...