目测观看人数 \(0+0+0=0\)


\(\mathrm{Meet\;in\;the\;middle}\)(简称 \(\rm MITM\)),顾名思义就是在中间相遇。

可以理解为就是起点跑搜索树基本一半的状态,终点也跑搜索树基本一半的状态,最后撞到中间,一种类似双向 DFS 的东西。优化还是不错的awa,减少了差不多一半。

时间复杂度可如下分析:

设向外搜索 \(n\) 层需要的代价为 \(k(n)\)。如果不用 \(\textrm{MITM}\),那么复杂度显然是 \(\mathcal O(k(n))\)。

以下提供两种做法:

  • 方法 \(1\):由 \(\rm MITM\) 定义得,从起点搜索到一半的代价为 \(k\left(\dfrac{n}{2}\right)\),从终点搜索到一半的代价也为 \(k\left(\dfrac{n}{2}\right)\),总代价为 \(2\cdot k\left(\dfrac{n}{2}\right)\),省略常数,得时间复杂度 \(\mathcal O\left(k\left(\dfrac{n}{2}\right)\right)\)。
  • 方法 \(2\):设搜索树起点与终点为 \(A,B\) 连接 \(B\) 与搜索树左右边缘中点,再连接两个左右边缘中点,将搜索树分为四个面积相等区块,\(\rm MITM\) 仅搜索其中两个区块,得时间复杂度为 \(\mathcal O\left(k\left(\dfrac{n}{2}\right)\right)\)。

这种算法吧,对于 \(k(n)=n^2\) 时,朴素算法为 \(n^2\),\(\rm MITM\) 为 \(\left(\dfrac{n}{2}\right)^2=\dfrac{n^2}{4}\),优化了 \(\dfrac{1}{4}\) 复杂度。线性的优化,在数据大时效果明显。但是如果 \(k(n)=2^n\),那么朴素算法为 \(2^n\),\(\rm MITM\) 为 \(2^{\frac{n}{2}}=\sqrt{2^n}\)。


显然从一个节点出发进行搜索这题肯定会超时的

对于一个 \(9\) 位数,一共有 \(9\) 种可能的 \(+1\) 操作(每一个数位都可以 \(+1\)),一共有 \(8\) 种可能的交换操作,共 \(17\) 种操作。乘法原理得如果向外搜 \(10\) 层复杂度是 \(17^{10}\)使用某 Windows 常用计算小工具得 \(17^{10}=2015993900449\) 假设计算机 \(1ms\) 运行 \(10^4\) 次操作还是不能 \(1s\) 解决,显然 \(\bold{\rm TLE}\)。

告诉起始点来个 \(\rm MITM\) 双向就珂以了,\(17^5=1419857\),就算是 \(1ms\) 跑 \(10^2\) 的老爷机跑的差不多才 \(0.1s\)。

这题 \(\rm BFS\) 可能会浪费点时间还是 \(\rm DFS\) 好awa

注意用个 \(\rm hash\),别 \(\rm MLE\) 了

  • 例题2

原题在 \(\rm codevs\) 众所周知 \(\rm codevs\) \(\dots\dots\)

有 \(n\) 个砝码,现在要称一个质量为 \(m\) 的物体,请问最少需要挑出几个砝码来称?

注意一个砝码最多只能挑一次。

\(1\le n\le 30\),\(1\le m\le 2^{31}\),\(1\le \text{每个砝码的质量}\le 2^{30}\)

看起来像是背包??(

  • 解法 \(1\):暴!力!出!奇!迹!一发爆搜切!掉!!

    记得优化awa

    1. 用后缀和优化
    2. 用读优
    3. 如果当前使用的砝码数 \(\ge\) 当前最优解,\(\rm return\)(最优性剪枝);
    4. 深搜之前按从大到小排序(改变搜索顺序),\(\text{当前总重量}+\text{当前砝码重量}<m\)(最优性剪枝) ,\(\rm return\);
    5. 如果 \(\text{当前总重量}+\text{当前砝码重量}>m\) ,换下一个砝码(可行性剪枝),注意不要 \(\rm return\);

    然后就可以写出代码了:

  • 解法 \(2\):用 \(\rm MITM\),如果后 \(\dfrac{1}{2}\) 发现有 \(=m\) 的就更新答案,这个稳过,不用优化。

    代码:

浅谈Meet in the middle——MITM的更多相关文章

  1. 【ASP.NET MVC系列】浅谈ASP.NET MVC 路由

    ASP.NET MVC系列文章 [01]浅谈Google Chrome浏览器(理论篇) [02]浅谈Google Chrome浏览器(操作篇)(上) [03]浅谈Google Chrome浏览器(操作 ...

  2. 浅谈分词算法(3)基于字的分词方法(HMM)

    目录 前言 目录 隐马尔可夫模型(Hidden Markov Model,HMM) HMM分词 两个假设 Viterbi算法 代码实现 实现效果 完整代码 参考文献 前言 在浅谈分词算法(1)分词中的 ...

  3. Meet in the middle学习笔记

    Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物 ...

  4. 【http协议】浅谈

    [http协议]浅谈 一. 概述 http,超文本传输协议(HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议. 请求与响应: 客户端发送请求,服务器端响应数 ...

  5. 浅谈分词算法基于字的分词方法(HMM)

    前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了 ...

  6. 浅谈 Fragment 生命周期

    版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...

  7. 浅谈 LayoutInflater

    浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...

  8. 浅谈Java的throw与throws

    转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...

  9. 浅谈SQL注入风险 - 一个Login拿下Server

    前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...

随机推荐

  1. Blazor和Vue对比学习(基础1.6):祖孙传值,联级和注入

    前面章节,我们实现了父子组件之间的数据传递.大多数时候,我们以组件形式来构建页面的区块,会涉及到组件嵌套的问题,一层套一层.这种情况,很大概率需要将祖先的数据,传递给子孙后代去使用.我们当然可以使用父 ...

  2. 论文解读《Deep Attention-guided Graph Clustering with Dual Self-supervision》

    论文信息 论文标题:Deep Attention-guided Graph Clustering with Dual Self-supervision论文作者:Zhihao Peng, Hui Liu ...

  3. 不可不知的 MySQL 升级利器及 5.7 升级到 8.0 的注意事项

    数据库升级,是一项让人喜忧参半的工程.喜的是,通过升级,可以享受新版本带来的新特性及性能提升.忧的是,新版本可能与老的版本不兼容,不兼容主要体现在以下三方面: 语法不兼容. 语义不兼容.同一个SQL, ...

  4. 技术管理进阶——技术Leader如何拒绝业务方?

    原创不易,求分享.求一键三连 前段时间,有个粉丝在群里问了一个问题: 今天对接一个业务团队,要我帮他导数据,这种工作又臭又烦又没成长,而且边界模糊谁做都可以,我很想拒绝他,但又怕引起对方不满,大家有什 ...

  5. CentOS自动同步时间

    安装ntpdate yum install ntpdate -y 测试是否正常 ntpdate cn.ntp.org.cn # 正常情况 [root@centos7 www]# ntpdate cn. ...

  6. e2fsck-磁盘分区修复

    检查 ext2/ext3/ext4 类型文件系统. 语法 e2fsck [-panyrcdfvtDFV] [-b superblock] [-B blocksize] [-I inode_buffer ...

  7. jQuery基础入门+购物车案例详解

    jQuery是一个快速.简洁的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨是"write Less,Do More",即倡导写更少的代码,做更多 ...

  8. 爷青回,canal 1.1.6来了,几个重要特性和bug修复

    刚刚在群里看到消息说,时隔一年,canal 1.1.6正式release了,赶紧上去看看有什么新特性. (居然才发布了6个小时,前排围观) 1.什么是canal canal [kə'næl],译意为水 ...

  9. python常用标准库(时间模块 time和datetime)

    常用的标准库 time时间模块 import time time -- 获取本地时间戳 时间戳又被称之为是Unix时间戳,原本是在Unix系统中的计时工具. 它的含义是从1970年1月1日(UTC/G ...

  10. MySQL之事务隔离级别和MVCC

    事务隔离级别 事务并发可能出现的问题 脏写 事务之间对增删改互相影响 脏读 事务之间读取其他未提交事务的数据 不可重复读 一个事务在多次执行一个select读到的数据前后不相同.因为被别的未提交事务修 ...