LCM性质 + 组合数 - HDU 5407 CRB and Candies
题目描述
给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6)。题目链接
解题思路
很有趣的一道数论题!
看了下网上别人的做法,什么Kummer定理我还真没听说过,仔细研究一下那个鬼定理真是涨姿势了!
然而这题我并不是用Kummer那货搞的(what?).
其实这题真的很简单(不要打我),为什么这样说呢?看了下面的解释你就知道我没骗你。
首先我们看一下这个式子:LCM(C(n,0),C(n,1),C(n,2)...C(n,n))
当时我的第一感觉是:晕,还是打个表吧!结果,打表程序后台打了四个半小时也没打完=.=(时间复杂度算错了)
做这题首先你得知道这个(基本常识):
求多个数的最小公倍数,有两种方法:
1)分解质因数法
先把这几个数分解质因数,再把它们一切公有的质因数和其中几个数公有的质因数以及每个数的独有的质因数全部连乘起来,所得的积就是它们的最小公倍数。
例如,求LCM[12,18,20,60]
因为12=(2)×[2]×[3],18=(2)×[3]×3,20=(2)×[2]×{5},60=(2)×[2]×[3]×{5}
其中四个数的公有的质因数为2(小括号中的数),
三个数的公有的质因数为2与3[中括号中的数],
两个数的公有的质因数为5{大括号中的数},
每个数独有的质因数为3。
所以,[12,18,20,60]=2×2×3×3×5=180。
2)公式法
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。
即(a,b)×[a,b]=a×b。
所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20]
即得[18,20]=18×20÷(18,20)=18×20÷2=180。
求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,
再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。
最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。
知道这个后,做这题选择哪种方法呢?
如果选择第二种方法,恭喜你,你绝壁和我一样想到打表滚粗!
既然第二种方法不行,肯定只能是第一种方法了。
那么要怎么做呢?
首先我们来看,对于组合数C(n,m),可以有如下变换:
C(n,m)=n!/[(n-m)!*m!]=n*(n-1)*(n-2)*....(m+1) / (n-m)!
这一步应该没问题吧!
也就是:C(n,m)=n!/[(n-m)!*m!]=n*(n-1)*(n-2)*....(m+1) / (n-m)! = n*(n-1)*(n-2)*....(m+1)/1/2/3/4/5/..../(n-m)
我们把前后结合一下,边乘边除:
对于第k步,就相当于*(n+1-k)且/k,k={1,2,...n-m}.
我们以n=8为例:
C(8,0)=1
C(8,1)=8*7*6*5*4*3*2 /7/6/5/4/3/2/1
C(8,2)=8*7*6*5*4*3 /6/5/4/3/2/1
C(8,3)=8*7*6*5*4 /5/4/3/2/1
C(8,4)=8*7*6*5 /4/3/2/1
C(8,5)=8*7*6 /3/2/1
C(8,6)=8*7 /2/1
C(8,7)=8 /1
C(8,8)=1
结合求n个数的LCM的方法,我们将问题转换成:
找i个数共有的质数,然后相乘就可,i={1,2,..n}。
好了,你可能会说:*$#@*@,找i个数共有的质数难道不超时,而且你的代码里连一个0~n的for循环都没有,你在逗我?
不急,看下面:
首先我们明确一点,C(n,k)的最大质因数是不会大于n的。
那么对于一个质数p来说,他对"n个数的LCM"的贡献在哪?
是不是就是p^1,p^2,p^3...中的一些?
哪些呢?
前面求组合数中,我们把C(n,m)分成了分子和分母来看。
如果p^x能够整除(n-1+k),那么他有可能是满足的,但是还不够,还要看是不是会被分母抵消掉。
只有p^x满足(n-1+k)%(p^x)==0且满足k%(p^x)!=0,这个p^x才是满足的,也就是对答案才有贡献,此时ans需要乘以p。
最后一步,约约分可能会更方便:把分子分母合一下,变成了:(n-1)%(p^x)!=0,表示(n-1+k)%(p^x)==0和k%(p^x)!=0不是同时出现的,此时才满足。
OK,推导完毕。
最终方法就是:
先筛出1e6以内的所有素数p,然后判断(n-1)%(p^x)是否!=0,是的话,ans*=p。
时间复杂度
O(p_num*sqrt(n))
代码
/*
* this code is made by crazyacking
* Verdict: Accepted
* Submission Date: 2015-08-21-15.17
* Time: 0MS
* Memory: 137KB
*/
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#define mod 1000000007
#define LL long long
#define ULL unsigned long long
using namespace std;
const int NN=;
bool v[NN];
int p[NN],num;
void makePrime(){
int i,j;
num=-;
for(i=; i<NN; ++i){
if(!v[i]) p[++num]=i;
for(j=; j<=num && i*p[j]<NN; ++j){
v[i*p[j]]=true;
if(i%p[j]==) break;
}
}
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie();
makePrime();
int t;
scanf("%d",&t);
while(t--){
int n;
scanf("%d",&n);
LL ans=;
for(int i=; i<=num; ++i){
for(LL t=p[i]; t<=n; t*=p[i]){
if((n+)%t!=)
ans=ans*p[i]%mod;
}
}
printf("%lld\n",ans);
}
return ;
}
LCM性质 + 组合数 - HDU 5407 CRB and Candies的更多相关文章
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- HDU 5407 CRB and Candies
题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...
- 数论 HDOJ 5407 CRB and Candies
题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...
- HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)
题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...
- CRB and Candies LCM 性质
题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...
随机推荐
- 【原】AFNetworking源码阅读(六)
[原]AFNetworking源码阅读(六) 本文转载请注明出处 —— polobymulberry-博客园 1. 前言 这一篇的想讲的,一个就是分析一下AFSecurityPolicy文件,看看AF ...
- 学习ASP.NET Core, 怎能不了解请求处理管道[6]: 管道是如何随着WebHost的开启被构建出来的?
注册的服务器和中间件共同构成了ASP.NET Core用于处理请求的管道, 这样一个管道是在我们启动作为应用宿主的WebHost时构建出来的.要深刻了解这个管道是如何被构建出来的,我们就必须对WebH ...
- Python碎碎念
1. 如何添加路径 主要有以下两种方式: 1> 临时的 import sys sys.path.append('C:\Users\Victor\Desktop') 2> 永久的 在Linu ...
- echarts+php+mysql 绘图实例
最近在学习php+mysql,因为之前画图表都是直接在echart的实例demo中修改数据,便想着两相结合练习一下,通过ajax调用后台数据画图表. 我使用的是echart3,相比较第二版,echar ...
- CSS 3学习——transition 过渡
以下内容根据官方规范翻译以及自己的理解整理. 1.介绍 这篇文档介绍能够实现隐式过渡的CSS新特性.文档中介绍的CSS新特性描述了CSS属性的值如何在给定的时间内平滑地从一个值变为另一个值. 2.过渡 ...
- RSA非对称加密,使用OpenSSL生成证书,iOS加密,java解密
最近换了一份工作,工作了大概一个多月了吧.差不多得有两个月没有更新博客了吧.在新公司自己写了一个iOS的比较通用的可以架构一个中型应用的不算是框架的一个结构,并已经投入使用.哈哈 说说文章标题的相关的 ...
- Spring(三)__aop编程
aop( aspect oriented programming ) 面向切面编程,是对所有对象或者是一类对象编程 几个重要的概念: 1.切面(aspect):要实现的交叉功能,是系统模块化的一个切面 ...
- Android之SharedPreferences数据存储
一.SharedPreferences保存数据介绍 如果有想要保存的相对较小键值集合,应使用SharedPreferences API.SharedPreferences对象指向包含键值对的文件并提供 ...
- T-SQL学习记录
T-sql是对SQL(structure query language )的升级.可以加函数. 系统数据库:master管理数据库.model模版数据库,msdb备份等操作需要用到的数据库,tempd ...
- (转载) RESTful API 设计指南
作者: 阮一峰 日期: 2014年5月22日 网络应用程序,分为前端和后端两个部分.当前的发展趋势,就是前端设备层出不穷(手机.平板.桌面电脑.其他专用设备......). 因此,必须有一种统一的机制 ...