........We arrive at the following results which provide the sine and cosine transforms of the H-function

$$\int_{0}^{\infty}x^{\rho}\sin (ax)H_{p,q}^{m,n}\bigg[bx^{\sigma}\Bigg|{}_{(b_{q},B_{q})}^{(a_{p},A_{p})}\Bigg]dx=\frac{2^{\rho-1}\sqrt{\pi}}{a^{\rho}}H_{p+2,q}^{m,n+1}\Bigg[b\left(\frac{2}{a}\right)^{\sigma}\Bigg|{}_{(b_{q},B_{q})}^{(\frac{1-\rho}{2},\frac{\rho}{2}),(a_{p},A_{p}),(\frac{2-\rho}{2},\frac{\rho}{2}}\Bigg]$$

where $a,\alpha,\sigma>0,\rho,b\in C,|\arg b|<\frac{\pi \alpha}{2}$,

$$Re(\rho)+\sigma \min_{1\leq j\leq m}Re\left(\frac{b_{j}}{B_{j}}\right)>-1;Re(\rho)+\sigma\max_{1\leq j\leq n}\frac{a_{j}-1}{A_{j}}<1$$

And

$$\int_{0}^{\infty}x^{\rho}\cos (ax)H_{p,q}^{m,n}\bigg[bx^{\sigma}\Bigg|{}_{(b_{q},B_{q})}^{(a_{p},A_{p})}\Bigg]dx=\frac{2^{\rho-1}\sqrt{\pi}}{a^{\rho}}H_{p+2,q}^{m,n+1}\Bigg[b\left(\frac{2}{a}\right)^{\sigma}\Bigg|{}_{(b_{q},B_{q})}^{(\frac{2-\rho}{2},\frac{\rho}{2}),(a_{p},A_{p}),(\frac{1-\rho}{2},\frac{\rho}{2})}\Bigg]$$

where $a,\alpha,\sigma>0,\rho,b\in C,|\arg b|<\frac{\pi \alpha}{2}$,

$$Re(\rho)+\sigma \min_{1\leq j\leq m}Re\left(\frac{b_{j}}{B_{j}}\right)>0;Re(\rho)+\sigma\max_{1\leq j\leq n}\frac{a_{j}-1}{A_{j}}<1$$

Specially,

$$E_{\alpha,\beta}(z)=\sum_{k=0}^{\infty}\frac{z^{k}}{\Gamma(\alpha z+\beta)}=H_{1,2}^{1,1}\Bigg[-z\Bigg|_{(0,1),(1-\beta,\alpha)}^{(0,1)}\Bigg]$$

Set $z=-a x^{2}$, we have

$$E_{\alpha,\beta}(-a x^{2})=H_{1,2}^{1,1}\Bigg[a x^{2}\Bigg|_{(0,1),(1-\beta,\alpha)}^{(0,1)}\Bigg]$$

Thus,

$$\int_{0}^{\infty}\cos (kx)E_{\alpha,\beta}(-ax^{2})dx=\frac{\pi}{k}H_{1,1}^{1,0}\Bigg[\frac{k^{2}}{a}\Bigg|_{(1,2)}^{(\beta,\alpha)}\Bigg]$$

关于H-Fox 函数的更多相关文章

  1. C string.h 常用函数

    参考:http://womendu.iteye.com/blog/1218155 http://blog.csdn.net/zccst/article/details/4294565 还有一些,忘记了 ...

  2. iOS math.h数学函数

    在实际工作中有些程序不可避免的需要使用数学函数进行计算,比如地图程序的地理坐标到地图坐标的变换.Objective-C做为ANSI C的扩展,使用C标准库头文件<math.h>中定义的数学 ...

  3. 走进C标准库(8)——"string.h"中函数的实现相关字符串操作函数

    我的strcat: char *strcat(char *dest,char *src) { char * reval = dest; while(*dest) dest++; while(*src) ...

  4. c语言string.h和memory.h某些函数重复问题

    在C语言中,为了使用memset()函数,你是选择#include <string.h>还是<memory.h>?两个都可以,如何选择? <string.h>,标准 ...

  5. (转)用库函数stdarg.h实现函数参数的可变

    原文地址:https://blog.csdn.net/jinkui2008/article/details/1967055 #define _INTSIZEOF(n)   ( (sizeof(n) + ...

  6. Andriod NDK编译的时候无法使用math.h的函数。

    编译NDK项目的时候,当用到sinf的时候,编译报错: 选中sinf函数,右键Go to declaration, 发现math.h的文件路径是: c:\ProgramData\Microsoft\A ...

  7. C语言ctype.h字符函数和字符串

    ctype.h存的是与字符相关的函数: 这些函数虽然不能处理整个字符串,但是可以处理字符串中的字符: ToUpper()函数,利用toupper()函数处理字符串中的每个字符,转换成大写: Punct ...

  8. ubuntu 使用glfw.h 出现函数无法调用

    最近在学习在Ubuntu下使用qt进行opengl开发,使用到了glfw这个库.我安装官网的编译和安装方法进行了配置安装,在usr/local/include的下产生了glfw.h文件. 于是我在我的 ...

  9. windows.h系统函数

    转载:https://blog.csdn.net/u010756046/article/details/82432312 // Windows系统函数.cpp: 定义控制台应用程序的入口点.// #i ...

  10. 走进C标准库(7)——"string.h"中函数的实现memcmp,memcpy,memmove,memset

    我的memcmp: int memcmp(void *buf1, void *buf2, unsigned int count){ int reval; while(count && ...

随机推荐

  1. sql2005主从数据库同步配置

    网站规模到了一定程度之后,该分的也分了,该优化的也做了优化,但是还是不能满足业务上对性能的要求:这时候我们可以考虑使用主从库.主从库是两台服务器上的两个数据库,主库以最快的速度做增删改操作+最新数据的 ...

  2. cocos2d-x之 CCSpriteBatchNode 用法总结

    例子1: CCSpriteBatchNode* batch = [CCSpriteBatchNode batchNodeWithFile:@"table.png"];        ...

  3. 基于RTP的H264视频数据打包解包类

    from:http://blog.csdn.net/dengzikun/article/details/5807694 最近考虑使用RTP替换原有的高清视频传输协议,遂上网查找有关H264视频RTP打 ...

  4. 学习Mongodb(一)

    图片摘录自陈彦铭出品2012.5的<10天掌握MongDB> MongoDB的特点--->面向集合存储,易于存储对象类型的数据--->模式自由--->支持动态查询---& ...

  5. ruby函数回调的实现方法

    以前一直困惑ruby不像python,c可以将函数随意传递,然后在需要的时候才去执行.其实本质原因是ruby的函数不是对象. 通过查阅资料发现可以使用如下方法: def func(a, b) puts ...

  6. 利用ioctl()获取无线速率

    其实对于自己装了网卡驱动的来说,应该从最根本的驱动中获取速率. 但是用ioctl()也可以,其实实现和iwconfig命令相同. 仅仅获取速率这部分: #include <stdio.h> ...

  7. [转] 使用C#开发ActiveX控件

    双魂人生 原文 使用C#开发ActiveX控件 ActiveX 是一个开放的集成平台,为开发人员.用户和 Web生产商提供了一个快速而简便的在 Internet 和 Intranet 创建程序集成和内 ...

  8. iOS已发布应用中对异常信息捕获和处理

    iOS已发布应用中对异常信息捕获和处理 iOS开发中我们会遇到程序抛出异常退出的情况,如果是在调试的过程中,异常的信息是一目了然,但是如果是在已经发布的程序中,获取异常的信息有时候是比较困难的. iO ...

  9. <转>Python 多线程的单cpu与cpu上的多线程的区别

    你对Python 多线程有所了解的话.那么你对python 多线程在单cpu意义上的多线程与多cpu上的多线程有着本质的区别,如果你对Python 多线程的相关知识想有更多的了解,你就可以浏览我们的文 ...

  10. The Automated Testing Handbook 自动化测试手册简介

    Learn what works, what doesn't and why. The Automated Testing Handbook is a practical blueprint for ...