1.所需要软件下载:

(1)libsvm(http://www.csie.ntu.edu.tw/~cjlin/libsvm/

(2)python

(3)gnuplot 画图软件(ftp://ftp.gnuplot.info/pub/gnuplot/

这里只考虑windows的环境:

1、 下载libsvm的zip包,只要解压到某个文件夹就好就好(随便D:\gjs\libsvm)

2、安装python(我的是2.7.3)

3、下载好gnuplot ,直接解压就好,无需安装(C:\gnuplot)

2.数据格式说明

0 1:5.1 2:3.5 3:1.4 4:0.2
2 1:4.9 2:3.0 3:1.4 4:0.2
1 1:4.7 2:3.2 3:1.3 4:0.2
[label]   [Index1]:[value1]  [index2]:[value2]  [index3]:[value3]
 [label]:类别(通常是整数)[index n]: 有顺序的索引 [value n]

可能需要自己转换训练以及测试数据的格式。

3.使用方法

1. windows cmd命令窗口

下载的libsvm包里面已经为我们编译好了(windows)。

进入libsvm\windows,可以看到这几个exe文件:

1.svm-predict: svmpredict     test_file       mode_file    output_file      依照已经train好的model ,输入新的数据,并输出预测新数据的类别。

2.svm-scale: 有时候特征值的波动范围比较大需要对特征数据进行缩放,可以缩放到0--1之间(自己定义)。

3.svm-toy:似乎是图形界面,可以自己画点,产生数据等。

4.svm-train:  svmtrain  [option]  train_file  [model_file]     train 会接受特定格式的输入,产生一个model 文件。

第一步:可以自己生成数据,使用svm-toy:

双击svm-toy,点击change可以在画布上画点:

点击run,其实就是train的过程,划分的区域:

点击save可以保存数据(假设保存的数据在D://libsvm.txt)。

第二步:使用训练数据libsvm.txt进行建模,使用svm-train:

使用cmd命令进入到我们解压的libsvm目录中的windows目录,使用svm-train,如下:


 其中,

#iter为迭代次数,

nu 是你选择的核函数类型的参数,

obj为SVM文件转换为的二次规划求解得到的最小值,

rho为判决函数的偏置项b,

nSV 为标准支持向量个数(0<a[i]<c),

nBSV为边界上的支持向量个数(a[i]=c),

Total nSV为支持向量总个数(对于两类来说,因为只有一个分类模型Total nSV = nSV,但是对于多类,这个是各个分类模型的nSV之和

同时在该目录下会生成一个训练好的model(libsvm.txt.model)可以打开文件查看里面的内容,主要包括一些参数和支持向量等

第三步:使用建好的model进行预测,使用svm-predict
     
同时会生成一个输出文件(libsvm.txt.out),每行代表该行的预测值类别。

参数优化:

svm的参数优化很重要,libsvm包里面包含了参数的优化函数,主要是暴力求解参数。一般来说我们会使用高斯核函数,包含两个参数(c 和 g)

使用gird.py文件进行参数优化选择:

grid.py在libsvm/tools里面,首先需要修改gird.py中的gnuplot文件路径问题,把文件里的路径改成gnuplot 存放的目录:

进入grid.py的相应目录,执行grid.py D://libsvm.txt

前面两个分别是c 跟g的值,这时候我们重新训练模型(加上参数c g)

可以看到,准确率有了显著的提升, 其实这些步骤完全可以使用easy.py进行实现,同理也需要修改eays.py里面的gnuplot文件路径问题,把文件里的路径改成gnuplot 存放的目录:

   步骤总结如下:

   1.转换训练数据为相应的格式。

   2.有时候可能需要使用 svm-scale对数据进行相应的缩放,有利于训练建模。

     

  3.使用grid.py或者easy.py进行参数优化。

  4.使用svm-train建模和svm-predict进行预测。

2.python版本 使用:

>>> import os
>>> os.chdir('D://gjs//libsvm//python')
>>> from svmutil import *
>>> y,x=svm_read_problem("D://libsvm.txt")
>>> m=svm_train(y,x,'-c 8.0 -g 8.0')
>>> p_lable,p_acc,p_val=svm_predict(y,x,m)
Accuracy = 96.1538% (25/26) (classification)
>>>
>>> import os
>>> os.chdir('D://gjs//libsvm//python')
>>> from svmutil import*
>>> data=svm_problem([1,-1],[[1,0,1],[-1,0,-1]]) #元组一表示分类类别
>>> param=svm_parameter('-c 8.0 -g 8.0')
>>> model=svm_train(data,param)
>>> svm_predict([1],[1,1,1],model)
>>>svm_predict([1,-1],[[1,-1,-1],[1,1,1]],model)
Accuracy = 0% (0/2) (classification)
([-1.0, 1.0], (0.0, 4.0, 1.0), [[0.0], [0.00033546262790251185]])

3.weka中使用libSVM:

  可以参照: http://datamining.xmu.edu.cn/~gjs/project/LibD3C.html

4.eclipse中调用libsvm:

   http://datamining.xmu.edu.cn/~gjs/download/LibSVM.jar

   http://datamining.xmu.edu.cn/~gjs/download/libsvm.jar

 下载以上两个包libsvm的包,然后在eclipse工程目录里面添加相应的jar包:

  

DataSource source = new DataSource("D://iris.arff");
Classifier clas=new LibSVM(); String[] optSVM = weka.core.Utils.splitOptions("-c 8.0 -g 8.0");
((LibSVM) clas).setOptions(optSVM);
Instances data=source.getDataSet();
data.setClassIndex(data.numAttributes()-1);
Evaluation eval=new Evaluation(data);
eval.crossValidateModel(clas, data, 10, new Random(1));
System.out.println(eval.toClassDetailsString());
System.out.println(eval.toSummaryString());
System.out.println(eval.toMatrixString());

输出结果为:

 5. linux下使用libsvm:

确认已经安装好python    

1. wget http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm.cgi?+http://www.csie.ntu.edu.tw/~cjlin/libsvm+tar.gz。

2tar -zxvf /home/gjs/libsvm.tar.gz。

3. 进入目录执行 make 编译。

4. ./svm-train /home/gjs/libsvm.txt  其他也类似。

5. python grid.py /home/gjs/libsvm.txt  优化参数。

libsvm使用方法总结的更多相关文章

  1. LIBSVM使用方法及参数设置 主要参考了一些博客以及自己使用经验。

    主要参考了一些博客以及自己使用经验.收集来觉得比较有用的. LIBSVM 数据格式需要---------------------- 决策属性  条件属性a  条件属性b  ... 2    1:7   ...

  2. LIBSVM使用方法及参数设置

    LIBSVM 数据格式需要---------------------- 决策属性 条件属性a 条件属性b ... 2 1:7 2:5 ... 1 1:4 2:2 ... 数据格式转换--------- ...

  3. Libsvm Matlab 快速安装教程 (适用于Win7+, 64bit, and Matlab2016a+)

    近日在开始学习Machine Learning SVM 相关算法,将Matlab平台安装SVM的步骤记录如下,亲测可用: 开发环境: Windows 8 64 bit, Matlab 2016a, S ...

  4. libsvm使用说明

    http://www.hankcs.com/ml/libsvm-usage.html libsvm使用说明 码农场 > 机器学习 2016-02-18 阅读(345) 评论(0)  目录   l ...

  5. python配置libsvm

    转载博文:win10(64-bit) + python3.6.0(64-bit) 配置libsvm-3.22 https://blog.csdn.net/weixin_35884839/article ...

  6. 如何转成libsvm支持的数据格式并做回归分析

    本次实验的数据是来自老师给的2006-2008年的日期,24小时的温度.电力负荷数据,以及2009年的日期,24小时的温度数据,目的是预测2009年每天24小时的电力负荷,实验数据本文不予给出. 用l ...

  7. libSVM介绍(二)

    鉴于libSVM中的readme文件有点长,并且,都是採用英文书写,这里,我把当中重要的内容提炼出来,并给出对应的样例来说明其使用方法,大家能够直接參考我的代码来调用libSVM库. 第一部分,利用l ...

  8. 机器学习实验一SVM分类实验

    一.实验目的和内容 (一)实验目的 1.熟悉支持向量机SVM(Support Vector Machine)模型分类算法的使用. 2.用svm-train中提供的代码框架(填入SVM分类器代码)用tr ...

  9. SVM训练结果参数说明 训练参数说明 归一化加快速度和提升准确率 归一化还原

    原文:http://blog.sina.com.cn/s/blog_57a1cae80101bit5.html 举例说明 svmtrain -s 0 -?c 1000 -t 1 -g 1 -r 1 - ...

随机推荐

  1. 如何设计Java框架----一个简单的例子【翻译】

    原文:http://www.programcreek.com/2011/09/how-to-design-a-java-framework/ 原文和翻译都只是参考,如有不对,欢迎指正. 你可能会好奇框 ...

  2. 详细讲解 关于Linux静态库和动态库的分析

    基本概念 库有动态与静态两种,动态通常用.so为后缀,静态用.a为后缀. 例如:libhello.so libhello.a 为了在同一系统中使用不同版本的库,可以在库文件名后加上版本号为后缀,例如: ...

  3. 25-语言入门-25-n-1位数

    题目地址: http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=96    描述已知w是一个大于10但不大于1000000的无符号整数,若w是n(n ...

  4. IOS刷新数据

    在一个项目开发过程中为了更好的体验经常会用到下拉刷新更新数据,当然也伴随一些上拉加载更多数据的情况:当前比较火的EGOTableViewPullRefresh只实现了下拉功能,而没有上拉的功能.这里介 ...

  5. HDU 1166 敌兵布阵 (线段树 单点更新)

    题目链接 线段树掌握的很差,打算从头从最简单的开始刷一波, 嗯..就从这个题开始吧! #include <iostream> #include <cstdio> #includ ...

  6. 概述什么是OSGi框架

    现 在越来越多的Java开发人员在谈论OSGi是有其道理的.在几年前上学的时候我进行了比较多的Eclipse插件开发,当时就亲身感觉到Eclipse 插件体系的灵活与强大,而该体系与OSGi也可谓一脉 ...

  7. SDOI 2010 and SXOI 2014 地精部落 (递推)

    用E[i,j]表示共有i个数字,以1..j开头且一开始下降的方案数的总和.则我们有: E[i,j]:=E[I,J-1]+E[i-1,i-j] 我们先来证明上升与下降的方案是一一对应的. 事实上,若有a ...

  8. 淘宝技术发展(Java时代:脱胎换骨)

    我的师父黄裳@岳旭强曾经说过,“好的架构图充满美感”,一个架构好不好,从审美的角度就能看得出来.后来我看了很多系统的架构,发现这个言论基本成立.那么反观淘宝前面的两个版本的架构,你看哪个比较美? 显然 ...

  9. EF4.0和EF5.0增删改查的写法区别及执行Sql的方法

    EF4.0和EF5.0增删改查的写法区别 public T AddEntity(T entity) { //EF4.0的写法 添加实体 //db.CreateObjectSet<T>(). ...

  10. Task '' not found in root project '***'.

    android编译app报错:Task '' not found in root project '***'.将build.gradle里的 if (gradle.gradleVersion > ...