关键词:

梯度下降:就是让数据顺着梯度最大的方向,也就是函数导数最大的放下下降,使其快速的接近结果。

Cost函数等公式太长,不在这打了。网上多得是。

这个非线性回归说白了就是缩小版的神经网络。

python实现:

 import numpy as np
import random def graientDescent(x,y,theta,alpha,m,numIterations):#梯度下降算法
xTrain =x.transpose()
for i in range(0,numIterations):#重复多少次
hypothesis=np.dot(x,theta) #h函数
loss=hypothesis-y cost=np.sum(loss**2) / (2*m)
print("Iteration %d / cost:%f"%(i,cost))
graient=np.dot(xTrain,loss)/m
theta=theta-alpha*graient
return theta def getData(numPoints,bias,variance):#自己生成待处理数据
x=np.zeros(shape=(numPoints,2))
y=np.zeros(shape=numPoints)
for i in range(0,numPoints):
x[i][0]=1
x[i][1] = i
y[i]=(i+bias)+random.uniform(0,1)*variance
return x,y X,Y=getData(100,25,10)
print("X:",X)
print("Y:",Y) numIterations=100000
alpha=0.0005
theta=np.ones(X.shape[1])
theta=graientDescent(X,Y,theta,alpha,X.shape[0],numIterations)
print(theta)

运行结果:

......输出数据太多,只截取后面十几行

Iteration 99988 / cost:3.930135
Iteration 99989 / cost:3.930135
Iteration 99990 / cost:3.930135
Iteration 99991 / cost:3.930135
Iteration 99992 / cost:3.930135
Iteration 99993 / cost:3.930135
Iteration 99994 / cost:3.930135
Iteration 99995 / cost:3.930135
Iteration 99996 / cost:3.930135
Iteration 99997 / cost:3.930135
Iteration 99998 / cost:3.930135
Iteration 99999 / cost:3.930135
[30.54541676 0.99982553]

其中遇到一个错误。

TypeError: unsupported operand type(s) for *: 'builtin_function_or_method' and 'float'

因为我第五行xTrain =x.transpose()。刚开始没加括号。直接用的xTrain =x.transpose

打印一下xTrain是

<built-in method transpose of numpy.ndarray object at 0x00000219C1D14850>

只是创建了一个transpose方法,并没有真的给x转置。加上括号就好了。再打印xTrain就能正常显示转置后的x了

菜鸟之路——机器学习之非线性回归个人理解及python实现的更多相关文章

  1. 菜鸟之路——机器学习之决策树个人理解及Python实现

    最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴.下面解释几个关键词就好. 信息熵(entropy):就是信息不确定性的多少 H(x)=-Σ ...

  2. 菜鸟之路——机器学习之线性回归个人理解及Python实现

    这一节很简单,都是高中讲过的东西 简单线性回归:y=b0+b1x+ε.b1=(Σ(xi-x–)(yi-y–))/Σ(xi-x–)ˆ2       b0=y--b1x-    其中ε取 为均值为0的正态 ...

  3. 菜鸟之路——机器学习之KNN算法个人理解及Python实现

    KNN(K Nearest Neighbor) 还是先记几个关键公式 距离:一般用Euclidean distance   E(x,y)√∑(xi-yi)2 .名字这么高大上,就是初中学的两点间的距离 ...

  4. 菜鸟之路——机器学习之BP神经网络个人理解及Python实现

    关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时 ...

  5. 菜鸟之路——机器学习之SVM分类器学习理解以及Python实现

    SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper ...

  6. 菜鸟之路——机器学习之HierarchicalClustering层次分析及个人理解

    这个算法.我个人感觉有点鸡肋.最终的表达也不是特别清楚. 原理很简单,从所有的样本中选取Euclidean distance最近的两个样本,归为一类,取其平均值组成一个新样本,总样本数少1:不断的重复 ...

  7. 菜鸟之路——机器学习之Kmeans聚类个人理解及Python实现

    一些概念 相关系数:衡量两组数据相关性 决定系数:(R2值)大概意思就是这个回归方程能解释百分之多少的真实值. Kmeans聚类大致就是选择K个中心点.不断遍历更新中心点的位置.离哪个中心点近就属于哪 ...

  8. 菜鸟之路——Linux基础::计算机网络基础,Linux常用系统命令,Linux用户与组权限

    最近又重新安排了一下我的计划.准备跟着老男孩的教程继续学习,感觉这一套教程讲的很全面,很详细.比我上一套机器学习好的多了. 他的第一阶段是Python基础,第二阶段是高等数学基础,主要将机器学习和深度 ...

  9. Python菜鸟之路:Django 路由补充1:FBV和CBV - 补充2:url默认参数

    一.FBV和CBV 在Python菜鸟之路:Django 路由.模板.Model(ORM)一节中,已经介绍了几种路由的写法及对应关系,那种写法可以称之为FBV: function base view ...

随机推荐

  1. Yii2 widgets [mztest/yii2-widget-file-upload]

    Enjoy it. A widget for uploading files to your server. Github , Packagist Screenshots

  2. git图形管理工具

    在windows下使用git命令行工具对非开发人员还是挺困难的,还好有TortoiseGit这个工具svn客户端用TortoiseSVNgit客户端用TortoiseGit 网址:https://to ...

  3. JIRA Plugin Development——Configurable Custom Field Plugin

    关于JIRA Plugin开发的中文资料相当少,这可能还是由于JIRA Plugin开发在国内比较小众的原因吧,下面介绍下自己的一个JIRA Plugin开发的详细过程. 业务需求 创建JIRA IS ...

  4. UVA Live Archive 4490 Help Bubu(状压dp)

    难点在于状态设计,从左向右一本书一本书的考虑,每本书的决策有两种拿走或者留下, 对于拿走后的书,之后要放回,但是决策过程中不知道到往哪里放, 虽然前面的书的种类确定,可能是往后面放更优,而后面的书的类 ...

  5. hdu-1233 还是畅通工程---MST模板

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1233 题目大意: 求MST最小生成树 解题思路: Prim算法直接套即可 #include<b ...

  6. 【BZOJ1076】[SCOI2008] 奖励关(状压DP)

    点此看题面 大致题意:总共有\(n\)个宝物和\(k\)个回合,每个回合系统将随机抛出一个宝物(抛出每个宝物的概率皆为\(1/n\)),吃掉一个宝物可以获得一定的积分(积分可能为负),而吃掉某个宝物有 ...

  7. 1.redis 安装

    1.https://redis.io/download. 2. $ wget http://download.redis.io/releases/redis-3.2.9.tar.gz $ .tar.g ...

  8. 如何在Mac上创建.txt文件

    cd ~/Desktoptouch test.txt cd 需要创建的文件夹目录vi 需要创建文件的文件名.txt

  9. CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第四节

    了解和使用共享内存(1) Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个国家级的实验室进行大型并行运 ...

  10. PAT 乙级 1078 / 1084

    题目 PAT 乙级 1078 PAT 乙级 1084 题解 1078和1084这两道题放在一块写,主要是因为这两道题的解法和做题思路非常相似:之前我做这一类题没有一个固定的套路,想到哪写到哪,在某种程 ...