AGC001 E - BBQ Hard【dp+组合数学】
首先直接按要求列出式子是\( \sum_{i=1}{n}\sum_{j=i+1}{n}C_{a_i+a_j+b_i+b_j}^{a_i+a_j} \)
这样显然过不了,因为ab的数据范围比较小,所以从这里入手,注意到后面的组合数含义是从点(ai,bi)走到点(-aj,-bj)的方案数
把但是j从i+1开始不好做,就容斥一下,把式子变成\( \sum_{i=1}{n}\sum_{j=1}{n}C_{a_i+a_j+b_i+b_j}{a_i+a_j}-\sum_{i=1}{n}C_{a_i+a_i+b_i+b_i}^{a_i+a_j} \)
所以设f[i][j]为从点(i,j)左下方存在的点走到点(i,j)的方案数总和,转移是f[i][j]+=f[i-1][j]+f[i][j-1]也就是从左点和下点走一步过来再加上这个点本来就存在的,就是原来的(ai,bi)要变成(-ai,-bi)
然后dp完对每个点都加到答案里再减掉后面的部分即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=200005,mod=1e9+7;
int n,a[N],b[N],f[4005][4005],fac[N],inv[N],ans;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
int C(int n,int m)
{
return 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;
}
int main()
{
fac[0]=inv[0]=1;
for(int i=1;i<=10000;i++)
fac[i]=1ll*fac[i-1]*i%mod;
inv[10000]=ksm(fac[10000],mod-2);
for(int i=9999;i>=1;i--)
inv[i]=1ll*inv[i+1]*(i+1)%mod;
n=read();
for(int i=1;i<=n;i++)
{
a[i]=read(),b[i]=read();
f[2001-a[i]][2001-b[i]]++;
ans=(ans-C(a[i]*2+b[i]*2,a[i]*2))%mod;
}
for(int i=1;i<=4002;i++)
for(int j=1;j<=4002;j++)
f[i][j]=(f[i][j]+f[i-1][j]+f[i][j-1])%mod;
for(int i=1;i<=n;i++)
ans=(ans+f[2001+a[i]][2001+b[i]])%mod;
printf("%d\n",(1ll*ans*ksm(2,mod-2)%mod+mod)%mod);
return 0;
}
AGC001 E - BBQ Hard【dp+组合数学】的更多相关文章
- AGC001 E - BBQ Hard 组合数学
题目链接 AGC001 E - BBQ Hard 题解 考虑\(C(n+m,n)\)的组合意义 从\((0,0)\)走到\((n,m)\)的方案数 从\((x,y)\)走到\((x+n,y+m)\)的 ...
- CF_229E_Gift_概率DP+组合数学
CF_229E_Gift_概率DP+组合数学 题目描述: 很久很久以前,一位老人和他的妻子住在蔚蓝的海边.有一天,这位老人前去捕鱼,他捉到了一条活着的金鱼.鱼说:“噢,老渔人!我祈求你放我回到海里,这 ...
- [多校联考2019(Round 5 T3)]青青草原的表彰大会(dp+组合数学)
[多校联考2019(Round 5)]青青草原的表彰大会(dp+组合数学) 题面 青青草原上有n 只羊,他们聚集在包包大人的家里,举办一年一度的表彰大会,在这次的表彰大会中,包包大人让羊们按自己的贡献 ...
- [Codeforces722E] Research Rover (dp+组合数学)
[Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...
- AT1983-[AGC001E]BBQ Hard【dp,组合数学】
正题 题目链接:https://www.luogu.com.cn/problem/AT1983 题目大意 给出\(n\)个数对\((a_i,b_i)\) 求 \[\sum_{i=1}^n\sum_{j ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- CF_402F dp+组合数学
题目链接:http://codeforces.com/problemset/problem/403/D /**算法分析: 这道题综合的考察了dp背包思想和组合数学 */ #include<bit ...
- 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)
3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...
- Codeforces - 1081C - Colorful Bricks - 简单dp - 组合数学
https://codeforces.com/problemset/problem/1081/C 这道题是不会的,我只会考虑 $k=0$ 和 $k=1$ 的情况. $k=0$ 就是全部同色, $k=1 ...
随机推荐
- weblogic开启远程访问的jmx设置
通过jmx远程访问weblogic获取监控jvm的数据,要在weblogic启动的时候设置一些配置,具体如下: 在weblogic的安装目录:{weblogic_home}/wlserver_10.3 ...
- HDU - 1241 Oil Deposits 【DFS】
题目链接 https://cn.vjudge.net/contest/65959#problem/L 题意 @表示油田 如果 @@是连在一起的 可以八个方向相连 那么它们就是 一块油田 要找出 一共有 ...
- oracle ORA-12514: TNS:listener does not currently know of service requested in connect descriptor
ORA-12514: TNS:listener does not currently know of service requested in connect descriptor 1.看看是不是监听 ...
- 3D立方体旋转动画
在线演示 本地下载
- callback机制之内核通知链表【转】
本文转载自:http://bbs.chinaunix.net/thread-2011776-1-1.html 1.通知链表简介 大多数内核子系统都是相互独立的,因此某个子系统可能对其它子系统产生 ...
- 算法(Algorithms)第4版 练习 链表类 1.3.19~1.3.29
package com.qiusongde.linkedlist; import java.util.Iterator; import java.util.NoSuchElementException ...
- Java截取最后一个 _ 后面的所有字符
String file = http://localhost:8888/upload/20190310/115111_58_592_HDFS读取文件的流程.png //截取文件名 String ori ...
- 「SDOI 2009」Elaxia的路线
发现自己这几天智商完全不在线-- 这道题的数据十分的水,怎样都可以艹过去-- 开始想了一个完全错误的算法,枚举一对点,判断这一对点是否同时在两条最短路上,是就用两点之间的路径更新答案.显然这样是错的: ...
- Linux_异常_03_Failed to restart iptables.service: Unit not found.
启动防火墙时出现: Failed to restart iptables.service: Unit not found. 解决方案: 1.https://stackoverflow.com/ques ...
- babel-runtime 和 babel-polyfill
Babel 默认只转换新的 JavaScript 语法 https://excaliburhan.com/post/babel-preset-and-plugins.html babel-plugin ...