codefoeces B. Friends and Presents
1 second
256 megabytes
standard input
standard output
You have two friends. You want to present each of them several positive integers. You want to present
cnt1 numbers to the first friend and
cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.
In addition, the first friend does not like the numbers that are divisible without remainder by prime number
x. The second one does not like the numbers that are divisible without remainder by prime number
y. Of course, you're not going to present your friends numbers they don't like.
Your task is to find such minimum number v, that you can form presents using numbers from a set
1, 2, ..., v. Of course you may choose not to present some numbers at all.
A positive integer number greater than 1 is called
prime if it has no positive divisors other than 1 and itself.
The only line contains four positive integers cnt1,
cnt2,
x, y (1 ≤ cnt1, cnt2 < 109;
cnt1 + cnt2 ≤ 109;
2 ≤ x < y ≤ 3·104) — the numbers that are described in the statement. It is guaranteed that numbers
x, y are prime.
Print a single integer — the answer to the problem.
3 1 2 3
5
1 3 2 3
4
In the first sample you give the set of numbers {1, 3, 5} to the first friend and the set of numbers
{2} to the second friend. Note that if you give set
{1, 3, 5} to the first friend, then we cannot give any of the numbers
1, 3,
5 to the second friend.
In the second sample you give the set of numbers {3} to the first friend, and the set of numbers
{1, 2, 4} to the second friend. Thus, the answer to the problem is
4.
题意:求出数字v ,使得能在1——v之间。分别选择cnt1不能被x整除 和 cnt2个数不能被y整除,而且cnt1和cnt2两组数中不能有同样的。
思路:二分加容斥原理
#include <iostream>
#include <stdio.h>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define ll __int64
#define N 2000000000
//容斥原理加二分。。 using namespace std;
ll cnt1,cnt2,x,y;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
} ll check(ll n)
{
ll t1,t2,t3,temp1,temp2,temp3; t1=n/x;//被x整除的个数
t2=n/y;//被y整除的个数
t3=n/(x*y/gcd(x,y));//被x和y最小公倍数整除的个数 if(n-t1>=cnt1&&n-t2>=cnt2&&n>=cnt1+cnt2+t3)
return true;
else
return false;
} int main()
{ while(~scanf("%I64d%I64d%I64d%I64d",&cnt1,&cnt2,&x,&y))
{
ll ri=N,le=1;
ll mid;
ll ans=0;
while(le<ri)
{
mid=(ri+le)/2;
if(check(mid))
{
ans=mid;
ri=mid;
}
else
le=mid+1;
}
cout<<ans<<endl;
}
return 0;
}
codefoeces B. Friends and Presents的更多相关文章
- CodeForces 483B Friends and Presents
Friends and Presents Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- B. Friends and Presents(Codeforces Round #275(div2)
B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Codeforces483B. Friends and Presents(二分+容斥原理)
题目链接:传送门 题目: B. Friends and Presents time limit per test second memory limit per test megabytes inpu ...
- Codeforces 483B - Friends and Presents(二分+容斥)
483B - Friends and Presents 思路:这个博客写的不错:http://www.cnblogs.com/windysai/p/4058235.html 代码: #include& ...
- CF 483B. Friends and Presents 数学 (二分) 难度:1
B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Codeforces Round #348 (VK Cup 2016 Round 2, Div. 2 Edition) A. Little Artem and Presents 水题
A. Little Artem and Presents 题目连接: http://www.codeforces.com/contest/669/problem/A Description Littl ...
- Codefoeces 734F. Anton and School 数学
Codefoeces 734F 题目大意: 给定两个正整数序列\(b,c\)构造一个正整数序列\(a\)使其满足 \[ \left\{ \begin{array}{} b_i=(a_i\text{ a ...
- codeforces 669A A. Little Artem and Presents(水题)
题目链接: A. Little Artem and Presents time limit per test 2 seconds memory limit per test 256 megabytes ...
- Codeforces Round #275 (Div. 2) B. Friends and Presents 二分+数学
8493833 2014-10-31 08:41:26 njczy2010 B - Friends and Presents G ...
随机推荐
- 数据库导入Exel,输入到浏览器
db.php <?php require dirname(__FILE__)."/dbconfig.php";//引入配置文件 class db{ public $conn= ...
- LR采用的Sigmoid函数与最大熵(ME) 的关系
LR采用的Sigmoid函数与最大熵(ME) 的关系 从ME到LR 先直接给出最大熵模型的一般形式,后面再给出具体的推导过程. \[\begin{align*} P_w(y|x) &= \df ...
- python闭包函数、装饰器
闭包函数的传值方式: 方式1:通过参数传值 def func(x): print(x)func(1) 方式2:闭包函数传值 def outter(x): def inner(): print(x) r ...
- [python][oldboy]关键字参数和位置参数,默认参数,可变长参数(无名,有名)
关键字参数和位置参数是在函数调用的时候定义 关键字参数是以键-值对出现,无序,多一个不行,少一个不行 位置参数,有序,多一个不行,少一个不行 混搭:所有位置参数必须在关键字参数的左边 默认参数是在函数 ...
- 关于sass和less做自适应网页的区别
less 可以这么写 @r: 15rem; body{margin-top:40/@r}; 但是sass这么写会报错 sass应该这么写 $r: 15; body{margin-top:40re ...
- sublime flatLand 主题
今天试了下感觉主题不错 记下来备忘. 1.sublime3 package control install 搜索 flatLand 2 安装完成后. 修改 Preferences 文件,通过 Sub ...
- Django ConnectionAbortedError WinError 10053 错误
因为ajax默认是异步提交,可是有时候我们会发现,本来要求请求马上出现,可是异步会导致后面突然再执行,这样就出问题了. (1)添加这样一段代码 $.ajaxSetup({ async : false ...
- 记一次安装centos7及gnome桌面
https://blog.csdn.net/bingbingtea/article/details/79553669
- Android调起地图导航
想要使用导航功能可以使用各个地图的开放平台集成导航模块,如果不想集成也可以调起相关app导航 调起其他app首先得使用到该app包名,先贴出来 public final static Strin ...
- rsync数据同步工具应用指南
Rsync (Remote synchonization) rsync是Unix下的一款应用软件,它能同步更新两处计算机的文件与目录,并适当利用差分编码以减少数据传输.rsync中一项与其他大部分类 ...