codefoeces B. Friends and Presents
1 second
256 megabytes
standard input
standard output
You have two friends. You want to present each of them several positive integers. You want to present
cnt1 numbers to the first friend and
cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.
In addition, the first friend does not like the numbers that are divisible without remainder by prime number
x. The second one does not like the numbers that are divisible without remainder by prime number
y. Of course, you're not going to present your friends numbers they don't like.
Your task is to find such minimum number v, that you can form presents using numbers from a set
1, 2, ..., v. Of course you may choose not to present some numbers at all.
A positive integer number greater than 1 is called
prime if it has no positive divisors other than 1 and itself.
The only line contains four positive integers cnt1,
cnt2,
x, y (1 ≤ cnt1, cnt2 < 109;
cnt1 + cnt2 ≤ 109;
2 ≤ x < y ≤ 3·104) — the numbers that are described in the statement. It is guaranteed that numbers
x, y are prime.
Print a single integer — the answer to the problem.
3 1 2 3
5
1 3 2 3
4
In the first sample you give the set of numbers {1, 3, 5} to the first friend and the set of numbers
{2} to the second friend. Note that if you give set
{1, 3, 5} to the first friend, then we cannot give any of the numbers
1, 3,
5 to the second friend.
In the second sample you give the set of numbers {3} to the first friend, and the set of numbers
{1, 2, 4} to the second friend. Thus, the answer to the problem is
4.
题意:求出数字v ,使得能在1——v之间。分别选择cnt1不能被x整除 和 cnt2个数不能被y整除,而且cnt1和cnt2两组数中不能有同样的。
思路:二分加容斥原理
#include <iostream>
#include <stdio.h>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define ll __int64
#define N 2000000000
//容斥原理加二分。。 using namespace std;
ll cnt1,cnt2,x,y;
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
} ll check(ll n)
{
ll t1,t2,t3,temp1,temp2,temp3; t1=n/x;//被x整除的个数
t2=n/y;//被y整除的个数
t3=n/(x*y/gcd(x,y));//被x和y最小公倍数整除的个数 if(n-t1>=cnt1&&n-t2>=cnt2&&n>=cnt1+cnt2+t3)
return true;
else
return false;
} int main()
{ while(~scanf("%I64d%I64d%I64d%I64d",&cnt1,&cnt2,&x,&y))
{
ll ri=N,le=1;
ll mid;
ll ans=0;
while(le<ri)
{
mid=(ri+le)/2;
if(check(mid))
{
ans=mid;
ri=mid;
}
else
le=mid+1;
}
cout<<ans<<endl;
}
return 0;
}
codefoeces B. Friends and Presents的更多相关文章
- CodeForces 483B Friends and Presents
Friends and Presents Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- B. Friends and Presents(Codeforces Round #275(div2)
B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Codeforces483B. Friends and Presents(二分+容斥原理)
题目链接:传送门 题目: B. Friends and Presents time limit per test second memory limit per test megabytes inpu ...
- Codeforces 483B - Friends and Presents(二分+容斥)
483B - Friends and Presents 思路:这个博客写的不错:http://www.cnblogs.com/windysai/p/4058235.html 代码: #include& ...
- CF 483B. Friends and Presents 数学 (二分) 难度:1
B. Friends and Presents time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Codeforces Round #348 (VK Cup 2016 Round 2, Div. 2 Edition) A. Little Artem and Presents 水题
A. Little Artem and Presents 题目连接: http://www.codeforces.com/contest/669/problem/A Description Littl ...
- Codefoeces 734F. Anton and School 数学
Codefoeces 734F 题目大意: 给定两个正整数序列\(b,c\)构造一个正整数序列\(a\)使其满足 \[ \left\{ \begin{array}{} b_i=(a_i\text{ a ...
- codeforces 669A A. Little Artem and Presents(水题)
题目链接: A. Little Artem and Presents time limit per test 2 seconds memory limit per test 256 megabytes ...
- Codeforces Round #275 (Div. 2) B. Friends and Presents 二分+数学
8493833 2014-10-31 08:41:26 njczy2010 B - Friends and Presents G ...
随机推荐
- csrf 攻击及防御
1.什么是CSRF攻击: CSRF(Cross-site request forgery),中文名称:跨站请求伪造,也被称为:one click attack/session riding,缩写为:C ...
- [adb 学习篇] python将adb命令集合到一个工具上
https://testerhome.com/topics/6938 qzhi的更全面,不过意思是一样的,另外补充一个开源的https://github.com/264768502/adb_wrapp ...
- iOS开发,最新判断是否是手机号的正则表达式
最近项目里需要判断是否为手机号并发送验证码的功能,一下是实现方法.不过这个方法还是有些不足,只能判断输入的11位数的号段是否正确,无法判断手机号是否存在.不过勉强可以使用! + (NSString * ...
- Java Socket IO(BIO、NIO)
总结下Java socket IO.首先是各种IO的定义,这个定义似乎也是众说纷纭.我按照stackoverflow上面的解释: IO有两种分法:按照阻塞或者按照同步.按照阻塞,有阻塞IO和非阻塞IO ...
- CentOS 7.4升级Linux内核
CentOS 7.4升级Linux内核 [日期:2018-01-15] 来源:Linux社区 作者:straycats [字体:大 中 小] 由于最近intel出了Meltdown和Spectre两 ...
- unix网络编程第2章
time_wait状态 可靠地实现tcp全双工连接的终止; (假设客户端先关闭).服务端再关闭,服务端将发送fin ,客户端此时进入time_wait状态.客户端接收到fin.将回一个ack.如果这 ...
- Python入门--20--类、对象
OO=Object Oriented 面向对象 python是面向对象的编程语言 OO的特征: 1.封装:把一堆东西都扔到一起,变为一个类 2.继承:假如一个类里面 3.多态:不同的类有相同名称的函数 ...
- HRBUST 2064:萌萌哒十五酱的宠物~(最近公共祖先LCA)
题意:一个n个点的树,询问某两点之间的简单路径,问路径上任选三边能否组成一个三角形. N<100000,权值<109 思路: 这里最神奇的思路过于以下这个: n个数,任意三个都不能组成三角 ...
- CodeForces 380.C Sereja and Brackets
题意 一串括号序列,只由(和)组成,然后是m个提问,提问l和r区间内,最大的匹配匹配括号数. 思路 第一,贪心的思想,用最正常的方式去尽量匹配,详细点说就是,先找到所有的(),然后删除这些(),再找所 ...
- 51nod 1088 最长回文子串 【中心拓展法/输出长度和路径】
1088 最长回文子串 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 回文串是指aba.abba.cccbccc.aaaa这种左右对称的字符串. 输入一个字 ...