http://www.fjutacm.com/Problem.jsp?pid=1251

想了很久,一开始居然还直接枚举因子d,计算重复了。

首先你要找与n的最大公因子大于m的x的个数。

\[\sum\limits_{x=1}^n [gcd(x,n)>=m]
\]

不能直接枚举d,d必须是n的因子,否则与n的gcd都不可能是d。

\[\sum\limits_{d=m \& d|n}^n \sum\limits_{x=1}^n [gcd(x,n)==d]
\]

后面那个有点眼熟?

\[\sum\limits_{d=m \& d|n}^n \sum\limits_{x=1}^{n/d} [gcd(x,n/d)==1]
\]

果然是欧拉函数:

\[\sum\limits_{d=m \& d|n}^n \varphi(n/d)
\]

然后,查了一下,因子的个数实在不会太多1e8不到1000个,1e17不到100000个。

那就直接质因数分解然后搜索。

一发AC。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int N=100000; int pri[N+5],tot,zhi[N+5];
void sieve(int n) {
zhi[1]=1;
for(int i=2; i<=n; i++) {
if(!zhi[i])
pri[++tot]=i;
for(int j=1; j<=tot&&i*pri[j]<=n; j++) {
zhi[i*pri[j]]=1;
if(i%pri[j])
;
else
break;
}
}
} ll phi(int n) {
ll res=n;
for(int i=1; i<=tot; i++) {
if(n%pri[i]==0) {
res=res/pri[i]*(pri[i]-1);
while(n%pri[i]==0) {
n/=pri[i];
}
}
if(n==1)
return res;
}
if(n==1)
return res;
else {
res=res/n*(n-1);
return res;
}
} int t,n,m; int fac[100];
int pfac[100];
int ftop=0;
void fj(int n) {
ftop=0;
for(int i=1; i<=tot; i++) {
if(n%pri[i]==0) {
fac[++ftop]=pri[i];
pfac[ftop]=0;
while(n%pri[i]==0) {
n/=pri[i];
pfac[ftop]++;
}
}
}
if(n!=1) {
fac[++ftop]=n;
pfac[ftop]=1;
}
return;
} ll ans; int power(int p,int n) {
if(n==0)
return 1;
int res=1;
while(n--)
res*=p;
return res;
} void dfs(int pos,int cur) {
if(pos>ftop) {
if(cur>=m)
ans+=phi(n/cur);
return;
}
for(int i=0; i<=pfac[pos]; i++) {
dfs(pos+1,cur*power(fac[pos],i));
}
} int main() {
#ifdef Yinku
freopen("Yinku.in","r",stdin);
#endif // Yinku
sieve(N);
scanf("%d",&t);
while(t--) {
scanf("%d%d",&n,&m);
ans=0;
fj(n);
dfs(1,1);
printf("%I64d\n",ans);
}
}

T^TOJ - 1251 - 。◕‿◕。TMD - 欧拉函数 - 质因数分解的更多相关文章

  1. HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...

  2. acm数论之旅--欧拉函数的证明

    随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...

  3. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  4. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  5. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  6. COGS2531. [HZOI 2016]函数的美 打表+欧拉函数

    题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...

  7. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  8. 51Nod-1136 欧拉函数

    51Nod: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1136 1136 欧拉函数 基准时间限制:1 秒 空间限制: ...

  9. 欧拉函数 - HDU1286

    欧拉函数的作用: 有[1,2.....n]这样一个集合,f(n)=这个集合中与n互质的元素的个数.欧拉函数描述了一些列与这个f(n)有关的一些性质,如下: 1.令p为一个素数,n = p ^ k,则 ...

随机推荐

  1. IP分配及网段划分

    1.IP我们先来了解一下3类常用的IP A类IP段 0.0.0.0 到127.255.255.255  B类IP段 128.0.0.0 到191.255.255.255  C类IP段 192.0.0. ...

  2. datatables参数配置详解

    //@translator codepiano //@blog codepiano //@email codepiano.li@gmail.com //尝试着翻译了一下,难免有错误的地方,欢迎发邮件告 ...

  3. 当CSDN携手Markdown

    当CSDN携手Markdown Tags: CSDN Markdown 当CSDN携手Markdown Markdown CSDN-Markdown 也不知道是不是基于 Github 崛起的因素,Ma ...

  4. Linux命令之ln软链接

    用途:链接文件 默认情况下,ln命令产生硬链接. 最常用的参数是-s(建立符号连接Symbolic Link,也叫软连接),具体用法是: ln-s 源文件 目标文件 当我们需要在不同的目录用到相同的文 ...

  5. MongoDB 操作手冊CRUD 事务 两步提交

    运行两步提交 概述 这部分提供了多记录更新或者多记录事务.使用两步提交来完毕多记录写入的模板. 另外.能够扩展此方法来提供rollback-like功能. 背景 MongoDB对于单条记录的操作是原子 ...

  6. C++基本数据类型及类型转换

    http://blog.csdn.net/pipisorry/article/details/25346379 c++基本数据类型 什么样的数据算是byte类型,int类型,float类型,doubl ...

  7. 互联网时代的精准招聘-Uber新手游有感

    找工作难.招人也难.漫天的简历,全是求职者广撒网式的复制粘贴,如何找到合适的人.会认真对待职位的人?或许你须要换换思路,看看Uber新出的手机游戏能够咱啥启发. Uber在过去5年已经蹭蹭成长为估值5 ...

  8. memcached和一致性hash算法

    1 一致性hash算法的一致性 这里的一致性指的是该算法可以保持memcached和数据库中的数据的一致性. 2 什么是一致性hash算法 2.1 为什么需要一致性hash算法 现在有大量的key v ...

  9. cmake中的变量和命令的大小写

    1 cmake中要特别注意命令和变量的大小写 2 cmake的内置命令是不区分大小写的 3 cmake内置变量是区分大小写的,或者干脆就说,cmake的所有变量都是区分大小写的 这就是变量和命令的不同 ...

  10. splittability A SequenceFile can be split by Hadoop and distributed across map jobs whereas a GZIP file cannot be.

    splittability CompressedStorage     Skip to end of metadata   Created by Confluence Administrator, l ...