题意:给定一个有向图,让你找出若干个图,使得每个点恰好属于一个圈,并且总的权和最小。

析:每个点都有唯一的一个圈,也就是说每一点都有唯一的后继,那么我们就可以转换成求一个图的最小权的最佳完全匹配,可以用最小费用流来求,

先把每个结点拆成两个点,假设是x,y,然后建立一个源点,向每个点的x连一条容量为1的边,建立一个汇点,每个点的y向汇点连一条容量为1的边,

每条边u,v,也连接一条容量为1,费用为权值的边,最小求一个最小费用流即可。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-5;
const int maxn = 2000 + 10;
const int mod = 1e6;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
struct Edge{
int from, to, cap, flow;
LL cost;
}; struct MCMF{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn];
LL d[maxn];
int p[maxn];
int a[maxn]; void init(int n){
this->n = n;
for(int i = 0; i < n; ++i) G[i].clear();
edges.clear();
} void addEdge(int from, int to, int cap, LL cost){
edges.push_back((Edge){from, to, cap, 0, cost});
edges.push_back((Edge){to, from, 0, 0, -cost});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
} bool BellmanFord(int s, int t, int &flow, LL &cost){
for(int i = 0; i < n; ++i) d[i] = INF;
memset(inq, 0, sizeof inq);
d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int> q;
q.push(s);
while(!q.empty()){
int u = q.front(); q.pop();
inq[u] = 0;
for(int i = 0; i < G[u].size(); ++i){
Edge &e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost){
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap-e.flow);
if(!inq[e.to]) q.push(e.to), inq[e.to] = 1;
}
}
}
if(d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];
int u = t;
while(u != s){
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
} int minCost(int s, int t, LL &cost){
int flow = 0; cost = 0;
while(BellmanFord(s, t, flow, cost));
return flow;
}
};
MCMF mcmf; int main(){
while(scanf("%d", &n) == 1 && n){
mcmf.init(n+n+2);
int v; LL val;
int s = 0, t = n+n+1;
for(int i = 1; i <= n; ++i){
// mcmf.addEdge(i, i+n, 1, 0);
mcmf.addEdge(s, i, 1, 0);
mcmf.addEdge(i+n, t, 1, 0);
while(scanf("%d", &v) == 1 && v){
scanf("%lld", &val);
mcmf.addEdge(i, v+n, 1, val);
}
} LL ans;
if(mcmf.minCost(s, t, ans) == n) printf("%lld\n", ans);
else printf("N\n");
}
return 0;
}

UVa 1349 Optimal Bus Route Design (最佳完美匹配)的更多相关文章

  1. UVa 1349 - Optimal Bus Route Design(二分图最佳完美匹配)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA 1349 Optimal Bus Route Design (二分图最小权完美匹配)

    恰好属于一个圈,那等价与每个点有唯一的前驱和后继,这让人想到了二分图, 把一个点拆开,点的前驱作为S集和点的后继作为T集,然后连边,跑二分图最小权完美匹配. 写的费用流..最大权完美匹配KM算法没看懂 ...

  3. UVA 1349 Optimal Bus Route Design 最优公交路线(最小费用流,拆点)

    题意: 给若干景点,每个景点有若干单向边到达其他景点,要求规划一下公交路线,使得每个景点有车可达,并且每个景点只能有1车经过1次,公车必须走环形回到出发点(出发点走2次).问是否存在这样的线路?若存在 ...

  4. UVa1349 Optimal Bus Route Design(二分图最佳完美匹配)

    UVA - 1349 Optimal Bus Route Design Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & ...

  5. UVA - 1349 D - Optimal Bus Route Design

    4. D - Optimal Bus Route Design 题意:给出n(n<=100)个点的带权有向图,找出若干个有向圈,每个点恰好属于一个有向圈.要求权和尽量小. 注意即使(u,v)和( ...

  6. UVA1349 Optimal Bus Route Design 拆点法+最小费用最佳匹配

    /** 题目:UVA1349 Optimal Bus Route Design 链接:https://vjudge.net/problem/UVA-1349 题意:lrj入门经典P375 给n个点(n ...

  7. UVa 11383 少林决胜(二分图最佳完美匹配)

    https://vjudge.net/problem/UVA-11383 题意: 给定一个N×N矩阵,每个格子里都有一个正整数W(i,j).你的任务是给每行确定一个整数row(i),每列也确定一个整数 ...

  8. UVa 1349 (二分图最小权完美匹配) Optimal Bus Route Design

    题意: 给出一个有向带权图,找到若干个圈,使得每个点恰好属于一个圈.而且这些圈所有边的权值之和最小. 分析: 每个点恰好属于一个有向圈 就等价于 每个点都有唯一后继. 所以把每个点i拆成两个点,Xi  ...

  9. 【uva 1349】Optimal Bus Route Design(图论--网络流 二分图的最小权完美匹配)

    题意:有一个N个点的有向带权图,要求找若干个有向圈,使得每个点恰好属于一个圈.请输出满足以上条件的最小权和. 解法:有向圈?也就是每个点有唯一的后继.这是一个可逆命题,同样地,只要每个点都有唯一的后继 ...

随机推荐

  1. Day1 [上]- 认识Python

    python简单介绍: python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为AB ...

  2. Python编写的ARP扫描工具

    源码如下: rom scapy.all import * import threading import argparse import logging import re logging.getLo ...

  3. bootstrap-table自己配置

    function initTable(){ var methodNameSearch=$("#methodNameSearch").val(); var requestUrl =  ...

  4. 【重磅干货】看了此文,Oracle SQL优化文章不必再看!

    目录 SQL优化的本质 SQL优化Road Map 2.1 制定SQL优化目标 2.2 检查执行计划 2.3 检查统计信息 2.4 检查高效访问结构 2.5 检查影响优化器的参数 2.6 SQL语句编 ...

  5. 在字符串资源文件里加入HTML元素,直接使用字符串资源,HTML元素没起作用的解决的方法

    escape  html  in string resource 一. 需求描写叙述 给TextView赋值res资源库中的字符串资源,注意这里是一个string资源,要实现以下的效果 "未 ...

  6. 我在开发第一个Swift App过程中学到的四件事

    本文转载至 http://www.itjhwd.com/wzkfyigeswiftsjs/ 译者注:本文作者Greg Heo,这是他为讲授iOS 8 App Extensions视频教程而实际使用Sw ...

  7. EasyDarwin开源流媒体服务器提供的RTMP直播推送库

    EasyRTMP EasyRTMP是什么? EasyRTMP是一个EasyDarwin配套使用,也可以单独使用的RTMP推送库,通过EasyRTMP我们就可以避免接触到稍显复杂的RTMP推送流程,只需 ...

  8. Delphi的类方法不是静态方法

    Delphi中,类方法不是你理解的静态方法 Delphi中的类方法与C++类中的static方法完全没有可比性.Delphi中的类方法是有Self的,而Self就是类本身(注意不是对象),而这个Sel ...

  9. HP叫魔术方法的函数

    PHP5.0后,php面向对象提成更多方法,使得php更加的强大!! 一些在PHP叫魔术方法的函数,在这里介绍一下:其实在一般的应用中,我们都需要用到他们!! 1.__construct() 当实例化 ...

  10. css position弹性盒子测试

    总结: 1.利用样式height:100%设置div高度为全屏时候必须设置所有的父元素,但是父元素那么多,不可控,所以此法不可行: 2.设置父框架的padding为100px,div进行float,p ...