指数型生成函数,推一推可得:

\[(1+\frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+...)^2+(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+...)^2
\]

\[=e^{2x}+(\frac{e^x+2^-x}{2})^2
\]

\[=e^{2x}+\frac{e^{2x}+e^{-2x}+2}{4}
\]

\[=\frac{e^{4x}+2e^{2x}+1}{4}
\]

因为

\[e^x=\sum_{i=0}^{inf}\frac{x^i}{i!},e^{4x}=\sum_{i=0}^{inf}\frac{(4x)^i}{i!}=\sum_{i=0}^{inf}\frac{4^ix^i}{i!}
\]

所以展开可得

\[=\frac{1}{4}+\frac{\sum_{i=0}^{inf}\frac{4^ix^i}{i!}+2*\sum_{i=0}^{inf}\frac{2^ix^i}{i!}}{4}
\]

\[=\frac{1}{4}+\frac{\sum_{i=0}^{inf}(4^i+2^{i+1})*\frac{x^i}{i!}}{4}
\]

前面的常数不用管,这样取i个的答案也就是第i项的系数就是\( 4i+2{i+1} \)

#include<iostream>
#include<cstdio>
using namespace std;
const int mod=10007;
int T,n;
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
printf("%d\n",(ksm(2,n-1)+ksm(4,n-1))%mod);
}
return 0;
}

poj 3734 Blocks【指数型生成函数】的更多相关文章

  1. [POJ 3734] Blocks (矩阵高速幂、组合数学)

    Blocks Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3997   Accepted: 1775 Descriptio ...

  2. POJ 3734 Blocks (矩阵快速幂)

    题目链接 Description Panda has received an assignment of painting a line of blocks. Since Panda is such ...

  3. poj 3734 Blocks

    ゲート 分析:这题过的人好多,然后大家好像是用矩阵过的(((φ(◎ロ◎;)φ))).我自己是推公式的. 对于任意的有这个式子, 就是先从里面选偶数个涂成两个指定的颜色,再在选出的里面选定涂某种颜色,选 ...

  4. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  5. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

  6. POJ 3734 Blocks (线性递推)

    定义ai表示红色和绿色方块中方块数为偶数的颜色有i个,i = 0,1,2. aij表示刷到第j个方块时的方案数,这是一个线性递推关系. 可以构造递推矩阵A,用矩阵快速幂求解. /*********** ...

  7. POJ 3734 Blocks 矩阵递推

    POJ3734 比较简单的递推题目,只需要记录当前两种颜色均为偶数, 只有一种颜色为偶数 两种颜色都为奇数 三个数量即可,递推方程相信大家可以导出. 最后来个快速幂加速即可. #include< ...

  8. poj 1390 Blocks

    poj 1390 Blocks 题意 一排带有颜色的砖块,每一个可以消除相同颜色的砖块,,每一次可以到块数k的平方分数.问怎么消能使分数最大.. 题解 此题在徐源盛<对一类动态规划问题的研究&g ...

  9. 指数型生成函数 及 多项式求ln

    指数型生成函数 我们知道普通型生成函数解决的是组合问题,而指数型生成函数解决的是排列问题 对于数列\(\{a_n\}\),我们定义其指数型生成函数为 \[G(x) = a_0 + a_1x + a_2 ...

随机推荐

  1. react 实现pure render的时候,bind(this)隐患

    react 实现pure render的时候,bind(this)隐患 export default class Parent extends Component { ... render() { c ...

  2. MySQL远程访问时非常慢的解决方案

    服务器放在局域网内进行测试时,数据库的访问速度还是很快.但当服务器放到外网后,数据库的访问速度就变得非常慢. 后来在网上发现解决方法,my.cnf里面添加 [mysqld] skip-name-res ...

  3. C#模拟登录Facebook 实现发送消息、评论帖子

    由于目前电脑网页版FB实现模拟登录比较困难,本次选择了FB的手机版页面进行登录 MVC: private static string UserName = "用户名"; priva ...

  4. C#不用union,而是有更好的方式实现 .net自定义错误页面实现 .net自定义错误页面实现升级篇 .net捕捉全局未处理异常的3种方式 一款很不错的FLASH时种插件 关于c#中委托使用小结 WEB网站常见受攻击方式及解决办法 判断URL是否存在 提升高并发量服务器性能解决思路

    C#不用union,而是有更好的方式实现   用过C/C++的人都知道有个union,特别好用,似乎char数组到short,int,float等的转换无所不能,也确实是能,并且用起来十分方便.那C# ...

  5. android binder 机制三(匿名Service)

    什么是匿名Service?凡是没有到ServiceManager上注冊的Service,都是匿名Service. 还是拿上一篇的样例来举例,看代码: status_t MediaPlayer::set ...

  6. Development of Intel chipsets interconnection

    http://en.wikipedia.org/wiki/Chipset Chipset From Wikipedia, the free encyclopedia     A chipset is ...

  7. [WF4.0 实战] 事件驱动应用

    看到题目或许非常多人都会疑问,为什么要使用事件监听呢? 眼下的认识: 1,使用事件监听能够将工作流的结点返回值返回到client 2,能够实现等待与重新启动,相当于之前的WaitActivity创建B ...

  8. 代码调试过程中easy遇到的问题

    前两天身体有些不舒服,也没写啥新文章,昨天下了一天的雨.今天阳光明媚,空气也非常新奇.心情大好. 继翻译为什么输出是String而不是Object,今天先写一下调试方面的东西.java中自带的函数调试 ...

  9. JSP复习笔记

    1.注释 <!--这个注释会显示在HTML源码中--> <%--隐藏注释,不会显示在HTML源码中--%> 2.声明 <%! java声明 声明变量,方法等 %> ...

  10. debian iptables持久化

    1 保存iptables iptables-save > /etc/iptables.rules   2 创建启动文件 touch /etc/network/if-pre-up.d/iptabl ...