指数型生成函数,推一推可得:

\[(1+\frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+...)^2+(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+...)^2
\]

\[=e^{2x}+(\frac{e^x+2^-x}{2})^2
\]

\[=e^{2x}+\frac{e^{2x}+e^{-2x}+2}{4}
\]

\[=\frac{e^{4x}+2e^{2x}+1}{4}
\]

因为

\[e^x=\sum_{i=0}^{inf}\frac{x^i}{i!},e^{4x}=\sum_{i=0}^{inf}\frac{(4x)^i}{i!}=\sum_{i=0}^{inf}\frac{4^ix^i}{i!}
\]

所以展开可得

\[=\frac{1}{4}+\frac{\sum_{i=0}^{inf}\frac{4^ix^i}{i!}+2*\sum_{i=0}^{inf}\frac{2^ix^i}{i!}}{4}
\]

\[=\frac{1}{4}+\frac{\sum_{i=0}^{inf}(4^i+2^{i+1})*\frac{x^i}{i!}}{4}
\]

前面的常数不用管,这样取i个的答案也就是第i项的系数就是\( 4i+2{i+1} \)

#include<iostream>
#include<cstdio>
using namespace std;
const int mod=10007;
int T,n;
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
printf("%d\n",(ksm(2,n-1)+ksm(4,n-1))%mod);
}
return 0;
}

poj 3734 Blocks【指数型生成函数】的更多相关文章

  1. [POJ 3734] Blocks (矩阵高速幂、组合数学)

    Blocks Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3997   Accepted: 1775 Descriptio ...

  2. POJ 3734 Blocks (矩阵快速幂)

    题目链接 Description Panda has received an assignment of painting a line of blocks. Since Panda is such ...

  3. poj 3734 Blocks

    ゲート 分析:这题过的人好多,然后大家好像是用矩阵过的(((φ(◎ロ◎;)φ))).我自己是推公式的. 对于任意的有这个式子, 就是先从里面选偶数个涂成两个指定的颜色,再在选出的里面选定涂某种颜色,选 ...

  4. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  5. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

  6. POJ 3734 Blocks (线性递推)

    定义ai表示红色和绿色方块中方块数为偶数的颜色有i个,i = 0,1,2. aij表示刷到第j个方块时的方案数,这是一个线性递推关系. 可以构造递推矩阵A,用矩阵快速幂求解. /*********** ...

  7. POJ 3734 Blocks 矩阵递推

    POJ3734 比较简单的递推题目,只需要记录当前两种颜色均为偶数, 只有一种颜色为偶数 两种颜色都为奇数 三个数量即可,递推方程相信大家可以导出. 最后来个快速幂加速即可. #include< ...

  8. poj 1390 Blocks

    poj 1390 Blocks 题意 一排带有颜色的砖块,每一个可以消除相同颜色的砖块,,每一次可以到块数k的平方分数.问怎么消能使分数最大.. 题解 此题在徐源盛<对一类动态规划问题的研究&g ...

  9. 指数型生成函数 及 多项式求ln

    指数型生成函数 我们知道普通型生成函数解决的是组合问题,而指数型生成函数解决的是排列问题 对于数列\(\{a_n\}\),我们定义其指数型生成函数为 \[G(x) = a_0 + a_1x + a_2 ...

随机推荐

  1. require.js结合项目的使用心得

    1.首先引入require.js 2.配置config.js文件 var $cdn_url=/'''/''/;----->指定文件一个共用的路径 require.config({ baseUrl ...

  2. poj 2828 Buy Tickets 【线段树点更新】

    题目:id=2828" target="_blank">poj 2828 Buy Tickets 题意:有n个人排队,每一个人有一个价值和要插的位置,然后当要插的位 ...

  3. C#压缩或解压(rar和zip文件)

    /// <summary> /// 解压RAR和ZIP文件(需存在Winrar.exe(只要自己电脑上可以解压或压缩文件就存在Winrar.exe)) /// </summary&g ...

  4. ActiveMQ(二) 转

    package pfs.y2017.m11.mq.activemq.demo02; import java.util.concurrent.atomic.AtomicInteger; import j ...

  5. 2015-03-12---外观模式,建造者模式(附代码),观察者模式(附代码),boost库应用

    今天白天主要看了boost库的应用,主要是经常使用的一些库,array,bind,function,regex,thread,unordered,ref,smartpointers库,晚上看了看设计模 ...

  6. [Selenium]通过Selenium实现在当前浏览器窗口点击一个图标之后,弹出另外一个窗口,关闭这个窗口,再回到原来的窗口进行操作

    public void clickReportIcon(){ String initialWindowHandle = driver.getWindowHandle(); //保存原始的浏览器窗口 p ...

  7. Finally语句块的运行

    一.finally语句块是否一定运行? Java中异常捕获机制try...catch...finally块中的finally语句是不是一定会被运行?非常多人都说不是.当然他们的回答是正确的,经过试验. ...

  8. 通俗易懂EJB

    摘自:http://blog.csdn.net/jojo52013145/article/details/5783677 1. 我们不禁要问,什么是"服务集群"?什么是" ...

  9. POJ2155 Matrix 二维线段树

    关键词:线段树 二维线段树维护一个 维护一个X线段的线段树,每个X节点维护一个 维护一个Y线段的线段树. 注意,以下代码没有PushDownX.因为如果要这么做,PushDownX时,由于当前X节点的 ...

  10. PR修改例子

    DATA: lt_items_old    LIKE TABLE OF bapiebanv   WITH HEADER LINE.   DATA: lt_items_new    LIKE TABLE ...