题意

$n \times m$的矩阵,不能取相邻的元素,问最大能取多少

Sol

首先补集转化一下:最大权值 = sum - 使图不连通的最小权值

进行黑白染色

从S向黑点连权值为点权的边

从白点向T连权值为点券的边

黑点向白点连权值为INF的边

这样就转化成了最小割问题,跑Dinic即可

/*
首先补集转化一下:最大权值 = sum - 使图不连通的最小权值
进行黑白染色
从S向黑点连权值为点权的边
从白点向T连权值为点券的边
黑点向白点连权值为INF的边
跑Dinic
*/
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = 1e5 + , INF = 1e9 + ;
inline int read() {
char c = getchar();
int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = ; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M, a[][], black[][], S, T = ;
struct Edge {
int u, v, f, nxt;
} E[MAXN];
int head[MAXN], cur[MAXN], num = ;
inline void add_edge(int x, int y, int z) {
E[num] = (Edge) {x, y, z, head[x]};
head[x] = num++;
}
inline void AddEdge(int x, int y, int z) {
add_edge(x, y, z);
add_edge(y, x, );
}
int trans(int x, int y) {
return (x - ) * M + y;
}
int xx[] = {, -, +, , };
int yy[] = {, , , -, +};
int deep[MAXN];
inline int BFS() {
queue<int> q; q.push(S);
memset(deep, , sizeof(deep));
deep[S] = ;
while(!q.empty()) {
int p = q.front(); q.pop();
for(int i = head[p]; i != -; i = E[i].nxt) {
int to = E[i].v;
if(!deep[to] && E[i].f)
deep[to] = deep[p] + , q.push(to);
}
}
return deep[T];
}
int DFS(int x, int flow) {
if(x == T) return flow;
int ansflow = ;
for(int &i = cur[x]; i != -; i = E[i].nxt) {
int to = E[i].v;
if(E[i].f && deep[to] == deep[x] + ) {
int nowflow = DFS(to, min(flow, E[i].f));
E[i].f -= nowflow; E[i ^ ].f += nowflow;
flow -= nowflow; ansflow += nowflow;
if(flow <= ) break;
}
}
return ansflow;
}
int Dinic() {
int ans = ;
while(BFS()) {
memcpy(cur, head, sizeof(head));
ans += DFS(S, INF);
}
return ans;
}
int main() {
memset(head, -, sizeof(head));
N = read();
M = read();
int sum = ;
for(int i = ; i <= N; i++)
for(int j = ; j <= M; j++) {
a[i][j] = read(); sum += a[i][j];
if((i + j) % == ) {
AddEdge(S, trans(i, j), a[i][j]);
for(int k = ; k <= ; k++) {
int wx = i + xx[k], wy = j + yy[k];
if(wx >= && wx <= N && wy >= && wy <= M)
AddEdge(trans(i, j), trans(wx, wy), INF);
}
}
else AddEdge(trans(i, j), T, a[i][j]);
}
printf("%d", sum - Dinic());
return ;
}
/*
3 3
1 000 00-
1 00- 0-+
2 0-- -++ */

洛谷P2774 方格取数问题(最小割)的更多相关文章

  1. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  2. 洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割

    https://www.luogu.org/problemnew/show/P2774 把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷. 这种类似的问题的话,把二分图的一部分( ...

  3. 洛谷P2774 方格取数问题(最小割)

    传送门 考虑一下,答案就是全局和减去舍弃和 不难发现,如果我们按行数+列数的奇偶性分为两类,那么每一类中的数必然互不相邻 那么我们把原图的点分为黑点和白点两类,原地向白点连边,黑点向汇点连边,容量为点 ...

  4. 洛谷 P2774 方格取数问题【最小割】

    因为都是正整数,所以当然取得越多越好.先把所有点权加起来,黑白染色后,s向所有黑点连流量为点权的边,所有白点向t连流量为点权的边,然后黑点向相邻的四个白点连流量为inf的边,表示不可割,这样一来,对于 ...

  5. [洛谷P2774]方格取数问题

    题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...

  6. 洛谷 [P2774] 方格取数问题

    二分图最大点权独立集 通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或 ...

  7. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  8. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  9. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

随机推荐

  1. Delphi通过POST传递参数给PHP

    Delphi代码 ******************************************************************************************* ...

  2. poj 1258 Agri-Net 解题报告

    题目链接:http://poj.org/problem?id=1258 题目意思:给出 n 个 farm,每个farm 之间通过一定数量的fiber 相连,问使得所有farm 直接或间接连通的 最少 ...

  3. bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)

    题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...

  4. impdp+network link 跳过expdp直接导入目标库

    impdp命令特殊用途,可以将数据库的一个用户迁移到另一台机器上的数据库的用户中.如果目标用户不存在,还可以对应的创建该用户.  快速的把A库上的用户迁移到B库上. 下面就来看一下命令格式: B库下执 ...

  5. solr安装-tomcat+solrCloud构建稳健solr集群

    solrCloud的搭建可以有两种方式:使用solr内嵌的jetty来搭建:使用外部web容器tomcat来搭建.对于使用jett来搭建参考solr官方的手册照着做肯定ok,下面我主要讲的是如何使用t ...

  6. HBase集群出现NotServingRegionException问题的排查及解决方法

    HBase集群在读写过程中,可能由于Region Split或Region Blance等导致Region的短暂下线,此时客户端与HBase集群进行RPC操作时会抛出NotServingRegionE ...

  7. I.MX6 Parallel RGB LCD Datasheet描述

    /******************************************************************** * I.MX6 Parallel RGB LCD Datas ...

  8. 【扬中集训DAY2T2】 机智的AmyZhi

    [题目链接] 点击打开链接 [算法] 据说标算是暴力? 从N-200开始搜 不过我用了搜索+一些奇怪的剪枝,也A了.... [代码] 标程 #include<bits/stdc++.h> ...

  9. Windows下如何生成数字证书

    1.Makecert.exe<证书创建工具>使用说明:http://msdn.microsoft.com/zh-cn/library/bfsktky3.aspx 2.SignTool.ex ...

  10. ASP.NET Core MVC 2.x 全面教程_ASP.NET Core MVC 20. Model Binding

    模型绑定 这是个最简单的绑定 先从表单找.再从路由的值上找,最后去QueryString上找 通过反射获取这个类型的属性进行填充.反射完有几个属性,就开始去找着几个属性并绑定值 复杂类型 最后又加了一 ...