题目背景

“叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻。毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌。1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定是一生最难忘的时刻!

题目描述

彩排了一次,老师不太满意。当然啦,取每位同学的号数来找最大公约数显然不太合理。于是老师给每位同学评了一个能力值。于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约数)最大。但因为节目太多了,而且每个节目需要的人数又不知道。老师想要知道所有情况下能达到的最大默契程度是多少。这下子更麻烦了,还是交给你吧~

PS:一个数的最大公约数即本身。

输入输出格式

输入格式:

第一行一个正整数n。

第二行为n个空格隔开的正整数,表示每个学生的能力值。

输出格式:

总共n行,第i行为k=i情况下的最大默契程度。

输入输出样例

输入样例#1:

4
1 2 3 4

输出样例#1:

4
2
1
1

说明

【数据范围】

记输入数据中能力值的最大值为inf。

对于20%的数据,n<=5,inf<=1000

对于另30%的数据,n<=100,inf<=10

对于100%的数据,n<=10000,inf<=1e6

解题思路:

洛谷 P1414 又是毕业季II(未完成)的更多相关文章

  1. 洛谷-P1414 又是毕业季II -枚举因子

    P1414 又是毕业季II:https://www.luogu.org/problemnew/show/P1414 题意: 给定一个长度为n的数列.要求输出n个数字,每个数字代表从给定数列中最合理地取 ...

  2. 洛谷 P1414 又是毕业季II

    题目链接 https://www.luogu.org/problemnew/show/P1414 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离 ...

  3. 洛谷 - P1414 - 又是毕业季II - 因数

    https://www.luogu.org/problemnew/show/P1414 以后这种gcd的还是尽可能往分解那里想一下. 先把每个数分解,他的所有因子都会cnt+1. 然后从最大的可能因子 ...

  4. 洛谷 P1414 又是毕业季II Label:None

    题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...

  5. 【数论】洛谷P1414又是毕业季II

    题目背景 "叮铃铃铃",随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业 ...

  6. 洛谷P1414 又是毕业季II

    题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在毕业晚会上,相信,这一定 ...

  7. 洛谷 P1414 又是毕业季II (多个数的最大公因数)

    这道题其实不难,但是我想复杂了 我想的是把每个数质因数分解,然后每次就枚举每个质因数 来求最小公倍数. 然后想了想这样复杂度将会非常的大,肯定超时 然后看了题解发现不需要质因数分解,直接存因数的个数就 ...

  8. 洛谷1414 又是毕业季II

    问题描述 彩排了一次,老师不太满意.当然啦,取每位同学的号数来找最大公约数显然不太合理.于是老师给每位同学评了一个能力值.于是现在问题变为,从n个学生中挑出k个人使得他们的默契程度(即能力值的最大公约 ...

  9. 洛谷P1414 又是毕业季 [数论]

    题目传送门 又是毕业季 题目背景 “叮铃铃铃”,随着高考最后一科结考铃声的敲响,三年青春时光顿时凝固于此刻.毕业的欣喜怎敌那离别的不舍,憧憬着未来仍毋忘逝去的歌.1000多个日夜的欢笑和泪水,全凝聚在 ...

随机推荐

  1. 不能更通俗了!KMP算法实现解析

    我之前对于KMP算法理解的也不是很到位,如果很长时间不写KMP的话,代码就记不清了,今天刷leetcode的时候突然决定干脆把它彻底总结一下,这样即便以后忘记了也好查看.所以就有了这篇文章. 本文在于 ...

  2. 【ZJOI2017 Round1练习&BZOJ5354】D7T3 room(DP)

    题意: 思路: 写了两种版本 考场版本 ..,..]of longint; t:..,..]of longint; n,m,i,j,k,oo,ans,d1:longint; function min( ...

  3. 【ZJOI2017 Round1练习】D7T1 graph(提答)

    题意: n<=1000 m<=10000 思路:

  4. scp远程文件传输

    第一次.提示下载公钥 [root@rhel5 ~]# scp install.log root@192.168.124.129:/tmp The authenticity of host '192.1 ...

  5. P2819 图的m着色问题 洛谷

    https://www.luogu.org/problem/show?pid=2819 题目背景 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色.如果有一种着色法使 ...

  6. openstack setup demo Overview

    Overview openstack是一套开源的云计算部署平台,通过一系列service提供IAAS.每一个service都提供API.具体的service列表如下: dashboard Horizo ...

  7. [Unity3D]Unity3D游戏开发之从Unity3D到Eclipse

    ---------------------------------------------------------------------------------------------------- ...

  8. ZOJ 1806 (小数高精度)

    题意:八进制小数转化成十进制的小数. 0.d1d2d3 ... dk [8] = 0.D1D2D3 ... Dm [10] 例: 0.75 [8] = 7*8^-1+5*8^-2 = ( 5/8 + ...

  9. J2SE基础:11.异常处理

    1:异常的概念: 异常是程序在执行时发生的事件(异常发生在执行期间). 程序出现错误.打断原本的运行流程. 2:Java中处理异常. 在Java中.异常被封装成一个对象.(属性和方法) 3:异常产生 ...

  10. 【codevs2183】匹配字符串

    KMP裸题 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring ...