线性筛+莫比乌斯反演

盗波图 来自candy?大神

反演很重要的一条公式就是[gcd(i,j)==1]=

线性筛怎么推呢?

我们分4个步骤,1.先推出f[1],2.推出f[p],p是一个质数,3.由于线性筛筛的是积性函数,那么当gcd(i,p[j])==1的时候,f[i*p[j]]=f[i]*f[p[j]],4.前三步都比较简单,第四步是if(i%p[j]==0)该怎么办

我们是要推这个东西的值,因为积性函数的约数和也是积性函数,所以这个也可以筛,那么我们考虑对于当前的D,我们用一个pri筛到了D,而且D%pri==0,然后思考一下,这个pri能给这个式子带来什么贡献呢?

很明显,i肯定是几个质数的乘积,否则mu[i]==0,没有意义,那么这个pri肯定对约数和没有贡献了,因为之前筛到的时候已经被计算过了,那个*i^2自然也是不可能受到pri的影响,但是我们看看那个D,现在我们求的是f[D*pri],那么自然D得乘上pri,所以我们得出现在f[i*pri]=f[i]*pri

大概是这样吧

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = , mod = ;
int n, m, T;
int mu[N], p[N];
bool mark[N];
ll f[N];
void ini()
{
mu[] = f[] = ;
for(int i = ; i <= ; ++i)
{
if(!mark[i])
{
p[++p[]] = i;
mu[i] = -;
f[i] = ((-(ll)i * (ll)i + i) % mod + mod) % mod;
}
for(int j = ; j <= p[] && i * p[j] <= ; ++j)
{
mark[i * p[j]] = ;
if(i % p[j] == )
{
mu[i * p[j]] = ;
f[i * p[j]] = f[i] * p[j] % mod;
break;
}
f[i * p[j]] = f[i] * f[p[j]] % mod;
mu[i * p[j]] = -mu[i];
}
}
for(int i = ; i <= ; ++i) f[i] = (f[i] + f[i - ]) % mod;
}
ll Sum(ll x, ll y)
{
return (x * (x + 1ll) / 2ll % mod) % mod * (y * (y + 1ll) / 2ll % mod) % mod;
}
void solve(int n, int m)
{
if(n > m) swap(n, m);
ll ret = ;
for(int i = , j = ; i <= n; i = j + )
{
j = min(n / (n / i), m / (m / i));
ret = (ret + Sum(n / i, m / i) % mod * ((f[j] - f[i - ]) % mod + mod) % mod) % mod;
}
printf("%lld\n", ret);
}
int main()
{
ini();
for(cin >> T; T; --T)
{
scanf("%d%d", &n, &m);
solve(n, m);
}
return ;
}

bzoj2693的更多相关文章

  1. 【BZOJ2693】jzptab(莫比乌斯反演)

    [BZOJ2693]jzptab(莫比乌斯反演) 题面 讨厌权限题,只能跑到别的OJ上交 和这题是一样的 多组数据 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 前 ...

  2. 题解-bzoj2154Crash的数字表格 & bzoj2693 jzptab

    Problem bzoj2818-单组询问-无权限 bzoj2693-多组询问-需权限 洛谷1829-单组询问-无权限 \(T\)组询问(如果有),给定 \(n,m\),求 \[\sum_{i=1}^ ...

  3. BZOJ2154/BZOJ2693/Luogu1829 Crash的数字表格/JZPFAR 莫比乌斯反演

    传送门--Luogu 传送门--BZOJ2154 BZOJ2693是权限题 其中JZPFAR是多组询问,Crash的数字表格是单组询问 先推式子(默认\(N \leq M\),所有分数下取整) \(\ ...

  4. 【BZOJ2693】jzptab & 【BZOJ2154】Crash的数字表格

    题目 弱化版题目的传送门([BZOJ2154]Crash的数字表格) 加强版题目的传送门([BZOJ2693]jzptab) 思路&解法 题目是要求: \(\sum\limits_{i = 1 ...

  5. BZOJ2154: Crash的数字表格 & BZOJ2693: jzptab

    [传送门:BZOJ2154&BZOJ2693] 简要题意: 给出n,m,求$\sum_{i=1}^{n}\sum_{j=1}^{m}LCM(i,j)$ 题解: 莫比乌斯反演(因为BZOJ269 ...

  6. BZOJ2693: jzptab

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题意:同2154 多组数据 题解:按2154再往后转化一下就可以把n,m放到一边儿,然后 ...

  7. 【BZOJ2693】jzptab

    Time Limit: 5000 ms Memory Limit: 512 MB description 给你\(n, m\),求\(\sum\limits_{i=1}^{n}\sum\limits_ ...

  8. 【bzoj2693】jzptab 莫比乌斯反演+线性筛

    题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...

  9. BZOJ2693:JZPTAP——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2693 Description   Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 ...

  10. 【BZOJ2693】jzptab [莫比乌斯反演]

    jzptab Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description   求 Input 第一行一个 ...

随机推荐

  1. 任务查询系统(bzoj 3932)

    Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...

  2. 【HDOJ6312】Game(博弈)

    题意: 有一个1到n的序列,两个人轮流取数,取走一个数同时会取走它所有的因子,不能取者为输,两个人都按最优策略取数,问先手是否必胜 思路: #include<cstdio> #includ ...

  3. 《effective C++》:条款37——绝不重新定义继承而来的缺省参数值

    引子: 阿里的一道题: #include <IOSTREAM> using namespace std; class A{ public: ) { cout<<"a~ ...

  4. SQL SERVER 2012 第三章 使用INSERT语句添加数据

    INSERT [TOP (<expression>) [PERCENT] [INTO] <tabular object>[(column list)][OUTPUT <o ...

  5. 动态规划:Monkey and Banana

    Problem Description A group of researchers are designing an experiment to test the IQ of a monkey. T ...

  6. 洛谷—— P1656 炸铁路

    P1656 炸铁路 题目描述 因为某国被某红色政权残酷的高压暴力统治.美国派出将军uim,对该国进行战略性措施,以解救涂炭的生灵. 该国有n个城市,这些城市以铁路相连.任意两个城市都可以通过铁路直接或 ...

  7. Git入门使用

    Git入门使用 安装Git 软件包如: Git-2.7.2-32-bit_setup.1457942412.exe TortoiseGit-1.8.12.0-64bit.msi 安装时候,直接点下一步 ...

  8. json转xml报[java.lang.NoClassDefFoundError: nu/xom/Serializer]

    原文:http://blog.csdn.net/figo645/article/details/48413571 开始学习JSON了,那么很自然的,我开始要熟悉一些基本的JSON语法 {}代表对象,[ ...

  9. 如何使用shell收集linux系统状态,并把结果发给远端服务器

    第一步:收集系统当天状态 load状态 内存状态 cpu状态 jvm相关信息:jstat jstack 网络信息 硬盘信息 第二步:发送到远端服务器 使用curl.wget.定义接口. https:/ ...

  10. C#编程语言及.NET 平台快速入门指南

    github: https://github.com/mfjiang e-mail: hamlet.jiang@live.com   ⼀.C#,CLR,IL,JIT概念 以及 .NET 家族 (⼀)基 ...