Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:

Triangle   P3,n=n(n+1)/2   1, 3, 6, 10, 15, ...
Square   P4,n=n2   1, 4, 9, 16, 25, ...
Pentagonal   P5,n=n(3n−1)/2   1, 5, 12, 22, 35, ...
Hexagonal   P6,n=n(2n−1)   1, 6, 15, 28, 45, ...
Heptagonal   P7,n=n(5n−3)/2   1, 7, 18, 34, 55, ...
Octagonal   P8,n=n(3n−2)   1, 8, 21, 40, 65, ...

The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.

  1. The set is cyclic, in that the last two digits of each number is the first two digits of the next number (including the last number with the first).
  2. Each polygonal type: triangle (P3,127=8128), square (P4,91=8281), and pentagonal (P5,44=2882), is represented by a different number in the set.
  3. This is the only set of 4-digit numbers with this property.

Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented
by a different number in the set.

又暴力破解了一次ㄟ( ▔, ▔ )ㄏ

一開始没看清题意,我以为这些数依次是满足triangle, square, pentagonal, hexagonal, heptagonal, and octagonal。结果发现无解┑( ̄Д  ̄)┍

#include <iostream>
#include <string>
#include <vector>
#include <unordered_map>
#include <time.h>
using namespace std; int triangle[100];
int pentagonal[10000];
int hextagonal[10000];
int heptagonal[10000];
int octagonal[10000];
int tri_count = 0; void getTriangle()
{
int count = 0;
for (int i = 1; i <= 200; i++)
{
int num = i*(i + 1) / 2;
if (num >1000&&num<10000)
triangle[count++] = num;
}
tri_count = count;
} bool isSqure(int n)
{
int i = sqrt(n);
if (i*i == n&&n>1000&&n<10000)
return true;
return false;
} void getPentagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(3 * i - 1) / 2;
if (num > 1000 && num < 10000)
pentagonal[num] = 1;
}
} bool isPentagonal(int n)
{
if (pentagonal[n] == 1)
return true;
return false;
} void getHexagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(2 * i - 1);
if (num>1000 && num < 10000)
hextagonal[num] = 1;
}
} bool isHexagonal(int n)
{
if (hextagonal[n] == 1)
return true;
return false;
} void getHeptagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(5 * i - 3) / 2;
if (num > 1000 && num < 10000)
heptagonal[num] = 1;
}
} bool isHeptagonal(int n)
{
if (heptagonal[n] == 1)
return true;
return false;
} void getOctagonal()
{
for (int i = 1; i <= 200; i++)
{
int num = i*(3 * i - 2);
if (num > 1000 && num < 10000)
octagonal[num] = 1;
}
} bool isOctagonal(int n)
{
if (octagonal[n] == 1)
return true;
return false;
} bool(*figurate[5])(int) = { isSqure, isPentagonal, isHexagonal, isHeptagonal, isOctagonal }; vector<int> GetRandomSequence()
{
unordered_map<int, int>tab;
vector<int>res;
int num;
for (int i = 0; i < 5; i++)
{
do{
num = rand() % 5;
} while (tab.find(num) != tab.end());
tab.insert(make_pair(num, 1));
res.push_back(num);
}
return res;
} int check()
{
int sum = 0;
srand((int)time(0));
vector<int>rs = GetRandomSequence();
for (int i = 0; i < tri_count; i++)
{
int a = triangle[i] / 100;
int b = triangle[i] % 100;
for (int s = 10; s <= 99; s++)
{
if ((*figurate[rs[0]])(b * 100 + s))
{
for (int p = 10; p <= 99; p++)
{
if ((*figurate[rs[1]])(s * 100 + p))
{
for (int hx = 10; hx <= 99; hx++)
{
if ((*figurate[rs[2]])(p * 100 + hx))
{
for (int hp = 10; hp <= 99; hp++)
{
if ((*figurate[rs[3]])(hx * 100 + hp))
{
if ((*figurate[rs[4]])(hp * 100 + a))
{
sum = triangle[i] + b * 100 + s + s * 100 + p + p * 100 + hx + hx * 100 + hp + hp * 100 + a;
return sum;
}
}
}
}
}
}
}
}
}
}
return -1;
} int main()
{
memset(pentagonal, 0, sizeof(pentagonal));
memset(hextagonal, 0, sizeof(hextagonal));
memset(heptagonal, 0, sizeof(heptagonal));
memset(octagonal, 0, sizeof(octagonal)); getTriangle();
getPentagonal();
getHexagonal();
getHeptagonal();
getOctagonal(); int flag;
while (true)
{
flag = check();
if (flag != -1)
break;
} cout << flag << endl; system("pause");
return 0;
}

把那个随机生成全排列换成next_permutation也是能搞出来的。

Project Euler:Problem 61 Cyclical figurate numbers的更多相关文章

  1. Project Euler:Problem 42 Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  2. Project Euler:Problem 55 Lychrel numbers

    If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...

  3. Project Euler:Problem 88 Product-sum numbers

    A natural number, N, that can be written as the sum and product of a given set of at least two natur ...

  4. Project Euler:Problem 87 Prime power triples

    The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...

  5. Project Euler:Problem 89 Roman numerals

    For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...

  6. Project Euler:Problem 93 Arithmetic expressions

    By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four ari ...

  7. Project Euler:Problem 28 Number spiral diagonals

    Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is forme ...

  8. Project Euler:Problem 47 Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...

  9. Project Euler:Problem 63 Powerful digit counts

    The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...

随机推荐

  1. Archive for required library: 'D:/Program Files/Apache/maven-repository/dom4j/dom4j/1.6.1/dom4j-1.6.1.jar'

    今天导入一个项目工程,发现报错:Archive for required library: 'D:/Program Files/Apache/maven-repository/dom4j/dom4j/ ...

  2. jquery点击tr换背景颜色

    jquery点击tr换tr的背景颜色,table的id为db-list1jQuery(function() { jQuery("#db-list1 tr").click( func ...

  3. mysql查询速度慢的原因[整理版]

    在以前的博客中陆续记录了有关查询效率方面的文章.今天在整理一下,写上自己的一些心得记录如下:常见查询慢的原因常见的话会有如下几种:1.没有索引或没有用到索引.PS:索引用来快速地寻找那些具有特定值的记 ...

  4. swift中的as?和as!

    as操作符用来把某个实例转型为另外的类型,由于实例转型可能失败,因此Swift为as操作符提供了两种形式:选项形式as?和强制形式as 选项形式(as?)的操作执行转换并返回期望类型的一个选项值,如果 ...

  5. Swift语言Storyboard教程:第二部

    本文由CocoaChina翻译小组@TurtleFromMars翻译自raywenderlich,原文:Storyboards Tutorial in Swift: Part 2 更新记录:该Stor ...

  6. JS简单实现防抖和节流

    一.什么是防抖和节流 Ps: 比如搜索框,用户在输入的时候使用change事件去调用搜索,如果用户每一次输入都去搜索的话,那得消耗多大的服务器资源,即使你的服务器资源很强大,也不带这么玩的. 1. 防 ...

  7. 树莓派搭建Seafile个人网盘

    步骤一.安装Seafile依赖包 yum install python-setuptools python-ldap python-memcached MySQL-python mariadb mar ...

  8. MySQL InnoDB配置统计信息

    MySQL InnoDB配置统计信息 1. 配置持久化(Persistent)统计信息参数 1.1 配置自动触发更新统计信息参数 1.2 配置每张表的统计参数 1.3 配置InnoDB优化器统计信息的 ...

  9. 关于程序计数器(PC)和条件控制转移 引起的性能差异

    关于PC(程序计数器) 冯 ·诺伊曼计算机体系结构的主要内容之一就是“程序预存储,计算机自动执行”! 处理器要执行的程序(指令序列)都是以二进制代码序列方式预存储在计算机的存储器中,处理器将这些代码逐 ...

  10. Dev Express中Dock panel的使用

    使用DockManager,添加DockPanel. 1,DockManager位于“导航和布局”分类中. 添加一个DockManager控件到窗体中以后,即是在当前窗体类中,添加一个DockMana ...