传送门

半平面交的讲解

然而这个代码真的是非常的迷……并不怎么看得懂……

//minamoto
#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
using namespace std;
const int N=1e5+5;const double eps=1e-9;
inline int dcmp(const double &a){return fabs(a)>=eps?a<0?-1:1:0;}
struct node{double x,y;}pt[N];int tot;
inline node operator -(node a,node b){return {a.x-b.x,a.y-b.y};}
inline double operator *(node a,node b){return a.x*b.y-a.y*b.x;}
struct line{node a,b;}p[N],dq[N];int tp,bt,n;
inline bool aboveX(line a){
if(!dcmp(a.b.y-a.a.y))return dcmp(a.b.x-a.a.x)>0;
return dcmp(a.b.y-a.a.y)>0;
}
inline bool cmp(line a,line b){
if(aboveX(a)!=aboveX(b))return aboveX(a);
if(!dcmp((a.b-a.a)*(b.b-b.a)))return dcmp((a.b-a.a)*(b.b-a.a))<0;
return dcmp((a.b-a.a)*(b.b-b.a))>0;
}
inline node get(line a,line b){
double a1=a.b.y-a.a.y,b1=a.a.x-a.b.x,c1=a.a*a.b;
double a2=b.b.y-b.a.y,b2=b.a.x-b.b.x,c2=b.a*b.b;
double d=a1*b2-a2*b1;
return {(b2*c1-b1*c2)/d,(a1*c2-a2*c1)/d};
}
inline bool pd(line a,line b,line c){
node p=get(a,b);
return dcmp((p-c.a)*(c.b-c.a))>-1;
}
void solve(){
tot=1;
fp(i,1,n)if(dcmp((p[i].b-p[i].a)*(p[tot].b-p[tot].a)))p[++tot]=p[i];
n=tot,dq[bt=1]=p[1],dq[tp=2]=p[2];
fp(i,3,n){
while(tp>bt&&pd(dq[tp],dq[tp-1],p[i]))--tp;
while(tp>bt&&pd(dq[bt],dq[bt+1],p[i]))++bt;
dq[++tp]=p[i];
}
while(tp>bt&&pd(dq[tp],dq[tp-1],dq[bt]))--tp;
while(tp>bt&&pd(dq[bt],dq[bt+1],dq[tp]))++bt;
dq[++tp]=dq[bt],tot=0;
fp(i,bt,tp-1)pt[++tot]=get(dq[i],dq[i+1]);
}
double area(double s=0){
if(tot<3)return 0;pt[++tot]=pt[1];
fp(i,1,tot-1)s+=pt[i]*pt[i+1];
return 0.5*fabs(s);
}
int main(){
// freopen("testdata.in","r",stdin);
int T;scanf("%d",&T);
while(T--){
int ps;scanf("%d",&ps);
fp(i,1,ps)scanf("%lf%lf",&pt[i].x,&pt[i].y);
pt[0]=pt[ps];
fp(i,0,ps-1)p[++n].a=pt[i],p[n].b=pt[i+1];
}
sort(p+1,p+1+n,cmp);
solve();double ans=area();printf("%.3lf\n",ans);return 0;
}

P4196 [CQOI2006]凸多边形的更多相关文章

  1. 洛谷 P4196 [CQOI2006]凸多边形 (半平面交)

    题目链接:P4196 [CQOI2006]凸多边形 题意 给定 \(n\) 个凸多边形,求它们相交的面积. 思路 半平面交 半平面交的模板题. 代码 #include <bits/stdc++. ...

  2. P4196 [CQOI2006]凸多边形 半平面交

    \(\color{#0066ff}{题目描述}\) 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. \(\color{#0066f ...

  3. 【BZOJ 2618】 2618: [Cqoi2006]凸多边形 (半平面交)

    2618: [Cqoi2006]凸多边形 Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一 ...

  4. bzoj 2618 2618: [Cqoi2006]凸多边形(半平面交)

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 656  Solved: 340[Submit][Status] ...

  5. bzoj 2618: [Cqoi2006]凸多边形 [半平面交]

    2618: [Cqoi2006]凸多边形 半平面交 注意一开始多边形边界不要太大... #include <iostream> #include <cstdio> #inclu ...

  6. 【BZOJ2618】[CQOI2006]凸多边形(半平面交)

    [BZOJ2618][CQOI2006]凸多边形(半平面交) 题面 BZOJ 洛谷 题解 这个东西就是要求凸多边形的边所形成的半平面交. 那么就是一个半平面交模板题了. 这里写的是平方的做法. #in ...

  7. 2018.07.04 BZOJ 2618 Cqoi2006凸多边形(半平面交)

    2618: [Cqoi2006]凸多边形 Time Limit: 5 Sec Memory Limit: 128 MB Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n ...

  8. bzoj2618: [Cqoi2006]凸多边形

    Description 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. Input 第一行有一个整数n,表示凸多边形的个数,以下依 ...

  9. BZOJ2618[Cqoi2006]凸多边形——半平面交

    题目描述 逆时针给出n个凸多边形的顶点坐标,求它们交的面积.例如n=2时,两个凸多边形如下图: 则相交部分的面积为5.233. 输入 第一行有一个整数n,表示凸多边形的个数,以下依次描述各个多边形.第 ...

随机推荐

  1. 关于SQL Server 的限制

    经常被人问到关于SQL Server 的连接数限制, 或者最大的文件大小, 或者标准版和企业版的区别,以及Express上的 其实这些问题都可以在MSDN 上直接找到 SQL Server 2014 ...

  2. 在win10配置环境变量

    从win7升级成win10后找不到在哪配置环境变量...手动再见ヾ( ̄▽ ̄)Bye~,废话不多说,下面开始图文模式: 1)打开文件资源管理器,点左上角的"计算机"

  3. 怎样签发SSL证书

    最近在做怎样让网站有SSL,搞了一天,现在总结一下 首先要安装OPENSSL和 Java的 keytool 先用OPENSSL生成私钥和CSR openssl req -newkey rsa:2048 ...

  4. [thrift] thrift基本原理及使用

    参考文章RPC 基本原理与 Apach Thrift 初体验 RPC基本原理 RPC(Remote Procedure Call),远程过程调用,大部分的RPC框架都遵循如下三个开发步骤: 1. 定义 ...

  5. Avro kafka(Producer-Consumer)

    https://blog.csdn.net/mlljava1111/article/details/51376990

  6. Delphi与Windows 7下的用户账户控制(UAC)机制

    WIN7, Vista提供的UAC机制,它的主要目的是防止对于操作系统本身的恶意修改.对于Delphi程序的影响,UAC主要在于以下几点:1.由于UAC机制,Delphi对于系统的操作可能无声的失败, ...

  7. MySQL查询去重语句

    1.distinct select count(distinct CName) from Course select count(CName) from (select distinct CName ...

  8. 用vhd挂载并安装win7且建立分差vhd

    准备:硬盘分区激活第一个分区; imagex.exe; install.wim; winpe boot pc 1.cmd命令下,创建主vhd      (1)diskpart       (打开dis ...

  9. myEclipse怎样将程序部署到tomcat(附录MyEclipse调试快捷键)

    部署 1.选中你要部署的项目,在工具栏找到 Deploy MyEclipse J2EE Project to Server 2.单击Add,即出现例如以下界面.选择对应的Server,要和你在配置to ...

  10. Objective-C 2.0 基础要点归纳

    本文的阅读基本条件: 具备C/C++基础知识,了解面向对象特征 阅读过<Objective-C 2.0 程序设计(第二版)>.<Objective-C 程序设计 第6版>或相关 ...