上文提到,到目前为止,caffe总共提供了六种优化方法:

  • Stochastic Gradient Descent (type: "SGD"),
  • AdaDelta (type: "AdaDelta"),
  • Adaptive Gradient (type: "AdaGrad"),
  • Adam (type: "Adam"),
  • Nesterov’s Accelerated Gradient (type: "Nesterov") and
  • RMSprop (type: "RMSProp")

Solver就是用来使loss最小化的优化方法。对于一个数据集D,需要优化的目标函数是整个数据集中所有数据loss的平均值。

其中,fW(x(i))计算的是数据x(i)上的loss, 先将每个单独的样本x的loss求出来,然后求和,最后求均值。 r(W)是正则项(weight_decay),为了减弱过拟合现象。

如果采用这种Loss 函数,迭代一次需要计算整个数据集,在数据集非常大的这情况下,这种方法的效率很低,这个也是我们熟知的梯度下降采用的方法。

在实际中,通过将整个数据集分成几批(batches), 每一批就是一个mini-batch,其数量(batch_size)为N<<|D|,此时的loss 函数为:
 

有了loss函数后,就可以迭代的求解loss和梯度来优化这个问题。在神经网络中,用forward pass来求解loss,用backward pass来求解梯度。

在caffe中,默认采用的Stochastic Gradient Descent(SGD)进行优化求解。后面几种方法也是基于梯度的优化方法(like SGD),因此本文只介绍一下SGD。其它的方法,有兴趣的同学,可以去看文献原文。

1、Stochastic gradient descent(SGD)

随机梯度下降(Stochastic gradient descent)是在梯度下降法(gradient descent)的基础上发展起来的,梯度下降法也叫最速下降法,具体原理在网易公开课《机器学习》中,吴恩达教授已经讲解得非常详细。SGD在通过负梯度和上一次的权重更新值Vt的线性组合来更新W,迭代公式如下:


 
其中,  是负梯度的学习率(base_lr),是上一次梯度值的权重(momentum),用来加权之前梯度方向对现在梯度下降方向的影响。这两个参数需要通过tuning来得到最好的结果,一般是根据经验设定的。如果你不知道如何设定这些参数,可以参考相关的论文。

在深度学习中使用SGD,比较好的初始化参数的策略是把学习率设为0.01左右(base_lr: 0.01),在训练的过程中,如果loss开始出现稳定水平时,对学习率乘以一个常数因子(gamma),这样的过程重复多次。

对于momentum,一般取值在0.5--0.99之间。通常设为0.9,momentum可以让使用SGD的深度学习方法更加稳定以及快速。

关于更多的momentum,请参看Hinton的《A Practical Guide to Training Restricted Boltzmann Machines》。

实例:

base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 1000
max_iter: 3500
momentum: 0.9

lr_policy设置为step,则学习率的变化规则为 base_lr * gamma ^ (floor(iter / stepsize))

即前1000次迭代,学习率为0.01; 第1001-2000次迭代,学习率为0.001; 第2001-3000次迭代,学习率为0.00001,第3001-3500次迭代,学习率为10-5

上面的设置只能作为一种指导,它们不能保证在任何情况下都能得到最佳的结果,有时候这种方法甚至不work。如果学习的时候出现diverge(比如,你一开始就发现非常大或者NaN或者inf的loss值或者输出),此时你需要降低base_lr的值(比如,0.001),然后重新训练,这样的过程重复几次直到你找到可以work的base_lr。

2、AdaDelta

AdaDelta是一种”鲁棒的学习率方法“,是基于梯度的优化方法(like SGD)。

具体的介绍文献:

M. Zeiler ADADELTA: AN ADAPTIVE LEARNING RATE METHODarXiv preprint, 2012.

示例:

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 1.0
lr_policy: "fixed"
momentum: 0.95
weight_decay: 0.0005
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_adadelta"
solver_mode: GPU
type: "AdaDelta"
delta: 1e-6

从最后两行可看出,设置solver type为Adadelta时,需要设置delta的值。

3、AdaGrad

自适应梯度(adaptive gradient)是基于梯度的优化方法(like SGD)

具体的介绍文献:

Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic OptimizationThe Journal of Machine Learning Research, 2011.

示例:

net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "fixed"
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train"
# solver mode: CPU or GPU
solver_mode: GPU
type: "AdaGrad"

4、Adam

是一种基于梯度的优化方法(like SGD)。

具体的介绍文献:

D. Kingma, J. Ba. Adam: A Method for Stochastic OptimizationInternational Conference for Learning Representations, 2015.

5、NAG

Nesterov 的加速梯度法(Nesterov’s accelerated gradient)作为凸优化中最理想的方法,其收敛速度非常快。

具体的介绍文献:

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the Importance of Initialization and Momentum in Deep LearningProceedings of the 30th International Conference on Machine Learning, 2013.

示例:

net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 10000
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train"
momentum: 0.95
# solver mode: CPU or GPU
solver_mode: GPU
type: "Nesterov"

6、RMSprop

RMSprop是Tieleman在一次 Coursera课程演讲中提出来的,也是一种基于梯度的优化方法(like SGD)

具体的介绍文献:

T. Tieleman, and G. Hinton. RMSProp: Divide the gradient by a running average of its recent magnitudeCOURSERA: Neural Networks for Machine Learning.Technical report, 2012.

示例:

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 1.0
lr_policy: "fixed"
momentum: 0.95
weight_decay: 0.0005
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_adadelta"
solver_mode: GPU
type: "RMSProp"
rms_decay: 0.98

最后两行,需要设置rms_decay值。

Caffe学习系列(8):solver优化方法的更多相关文章

  1. Caffe 学习系列

    学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...

  2. Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  3. 转 Caffe学习系列(3):视觉层(Vision Layers)及参数

    所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...

  4. [转]solver优化方法

    原文地址:http://www.cnblogs.com/denny402/p/5074212.html 到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Desc ...

  5. affe(8) solver 优化方法

    上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: &q ...

  6. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  7. Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  8. 转 Caffe学习系列(12):训练和测试自己的图片

    学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...

  9. Caffe学习系列——工具篇:神经网络模型结构可视化

    Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...

随机推荐

  1. 软件工程(c编码实践) 学习笔记(一)

    vim 有三种模式:一般模式,编辑模式,命令模式. -------------------------------------------------------------------------- ...

  2. 数据仓库建模与ETL实践技巧

    数据分析系统的总体架构分为四个部分 —— 源系统.数据仓库.多维数据库.客户端(图一:pic1.bmp) 其中,数据仓库(DW)起到了数据大集中的作用.通过数据抽取,把数据从源系统源源不断地抽取出来, ...

  3. Android程序入口以及项目文件夹的含义和使用总结—入门

    新接触一门程序或者开发框架,我一般都要先弄清楚程序的入口在哪里,程序怎么运行的:建立一个项目后,各个文件夹有什么作用以及如何使用等等.理清楚这些东西对以后开发是很有好处的,古话说得好,工欲善其事,必先 ...

  4. java工程中的相关路径

    一.路径 绝对路径: 指的是文件在系统中的真实路径(物理路径). 相对路径: 指的是文件相对某个目录的相对路径. 对于java application 工程来说,当编写完一个类之后,class文件会编 ...

  5. 关于Math类的round、floor、ceil三个方法

    一.Math类这三个方法的简介 1.round():取最接近的值. 对于这个方法,查看源代码,其实现如下: public static long round(double a) { if (a != ...

  6. wait方法和sleep方法的区别

    一.概念.原理.区别 Java中的多线程是一种抢占式的机制而不是分时机制.线程主要有以下几种状态:可运行,运行,阻塞,死亡.抢占式机制指的是有多个线程处于可运行状态,但是只有一个线程在运行.      ...

  7. PPT制作教程:如何制作ppt

    PowerPoint(PPT)是专门用于制作演示文稿(俗称幻灯片).广泛运用于各种会议.产品演示.学校教学等.学会如何制作ppt,成为提升工作效 率的好帮手.PPT包含有很多的功能,我们可以根据个人喜 ...

  8. 设计模式C#实现(三)——外观模式

    外观模式——提供了一个统一的接口,用来访问子系统中的一群接口.外观定义了一个高层接口让子系统更容易使用. 一个外观包含了为许多对象和对他们的操作,使得重复这些操作更方便. 假如客厅里有灯(Lights ...

  9. c# App.Config详解

    c# App.Config详解 应用程序配置文件是标准的 XML 文件,XML 标记和属性是区分大小写的.它是可以按需要更改的,开发人员可以使用配置文件来更改设置,而不必重编译应用程序. 配置文件的根 ...

  10. iTOP-4412开发板低功耗高性能的开源硬件平台——上手评测

    iTOP-4412开发板现在比较热门的开发板,笔者近期入了一套.也推荐给初学ARM的朋友学习,4412开发板搭载三星Exynos四核处理器,配备1GB内存,4GB固态硬盘EMMC存储,兼具快速读取与超 ...