Caffe学习系列(8):solver优化方法
上文提到,到目前为止,caffe总共提供了六种优化方法:
- Stochastic Gradient Descent (
type: "SGD"), - AdaDelta (
type: "AdaDelta"), - Adaptive Gradient (
type: "AdaGrad"), - Adam (
type: "Adam"), - Nesterov’s Accelerated Gradient (
type: "Nesterov") and - RMSprop (
type: "RMSProp")
Solver就是用来使loss最小化的优化方法。对于一个数据集D,需要优化的目标函数是整个数据集中所有数据loss的平均值。
其中,fW(x(i))计算的是数据x(i)上的loss, 先将每个单独的样本x的loss求出来,然后求和,最后求均值。 r(W)是正则项(weight_decay),为了减弱过拟合现象。
如果采用这种Loss 函数,迭代一次需要计算整个数据集,在数据集非常大的这情况下,这种方法的效率很低,这个也是我们熟知的梯度下降采用的方法。
在实际中,通过将整个数据集分成几批(batches), 每一批就是一个mini-batch,其数量(batch_size)为N<<|D|,此时的loss 函数为:
有了loss函数后,就可以迭代的求解loss和梯度来优化这个问题。在神经网络中,用forward pass来求解loss,用backward pass来求解梯度。
在caffe中,默认采用的Stochastic Gradient Descent(SGD)进行优化求解。后面几种方法也是基于梯度的优化方法(like SGD),因此本文只介绍一下SGD。其它的方法,有兴趣的同学,可以去看文献原文。
1、Stochastic gradient descent(SGD)
随机梯度下降(Stochastic gradient descent)是在梯度下降法(gradient descent)的基础上发展起来的,梯度下降法也叫最速下降法,具体原理在网易公开课《机器学习》中,吴恩达教授已经讲解得非常详细。SGD在通过负梯度和上一次的权重更新值Vt的线性组合来更新W,迭代公式如下:
其中, 是负梯度的学习率(base_lr),
是上一次梯度值的权重(momentum),用来加权之前梯度方向对现在梯度下降方向的影响。这两个参数需要通过tuning来得到最好的结果,一般是根据经验设定的。如果你不知道如何设定这些参数,可以参考相关的论文。
在深度学习中使用SGD,比较好的初始化参数的策略是把学习率设为0.01左右(base_lr: 0.01),在训练的过程中,如果loss开始出现稳定水平时,对学习率乘以一个常数因子(gamma),这样的过程重复多次。
对于momentum,一般取值在0.5--0.99之间。通常设为0.9,momentum可以让使用SGD的深度学习方法更加稳定以及快速。
关于更多的momentum,请参看Hinton的《A Practical Guide to Training Restricted Boltzmann Machines》。
实例:
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 1000
max_iter: 3500
momentum: 0.9
lr_policy设置为step,则学习率的变化规则为 base_lr * gamma ^ (floor(iter / stepsize))
即前1000次迭代,学习率为0.01; 第1001-2000次迭代,学习率为0.001; 第2001-3000次迭代,学习率为0.00001,第3001-3500次迭代,学习率为10-5
上面的设置只能作为一种指导,它们不能保证在任何情况下都能得到最佳的结果,有时候这种方法甚至不work。如果学习的时候出现diverge(比如,你一开始就发现非常大或者NaN或者inf的loss值或者输出),此时你需要降低base_lr的值(比如,0.001),然后重新训练,这样的过程重复几次直到你找到可以work的base_lr。
2、AdaDelta
AdaDelta是一种”鲁棒的学习率方法“,是基于梯度的优化方法(like SGD)。
具体的介绍文献:
M. Zeiler ADADELTA: AN ADAPTIVE LEARNING RATE METHOD. arXiv preprint, 2012.
示例:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 1.0
lr_policy: "fixed"
momentum: 0.95
weight_decay: 0.0005
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_adadelta"
solver_mode: GPU
type: "AdaDelta"
delta: 1e-6
从最后两行可看出,设置solver type为Adadelta时,需要设置delta的值。
3、AdaGrad
自适应梯度(adaptive gradient)是基于梯度的优化方法(like SGD)
具体的介绍文献:
Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. The Journal of Machine Learning Research, 2011.
示例:
net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "fixed"
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train"
# solver mode: CPU or GPU
solver_mode: GPU
type: "AdaGrad"
4、Adam
是一种基于梯度的优化方法(like SGD)。
具体的介绍文献:
D. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. International Conference for Learning Representations, 2015.
5、NAG
Nesterov 的加速梯度法(Nesterov’s accelerated gradient)作为凸优化中最理想的方法,其收敛速度非常快。
具体的介绍文献:
I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the Importance of Initialization and Momentum in Deep Learning. Proceedings of the 30th International Conference on Machine Learning, 2013.
示例:
net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 10000
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train"
momentum: 0.95
# solver mode: CPU or GPU
solver_mode: GPU
type: "Nesterov"
6、RMSprop
RMSprop是Tieleman在一次 Coursera课程演讲中提出来的,也是一种基于梯度的优化方法(like SGD)
具体的介绍文献:
T. Tieleman, and G. Hinton. RMSProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning.Technical report, 2012.
示例:
net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 1.0
lr_policy: "fixed"
momentum: 0.95
weight_decay: 0.0005
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_adadelta"
solver_mode: GPU
type: "RMSProp"
rms_decay: 0.98
最后两行,需要设置rms_decay值。
Caffe学习系列(8):solver优化方法的更多相关文章
- Caffe 学习系列
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- 转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- [转]solver优化方法
原文地址:http://www.cnblogs.com/denny402/p/5074212.html 到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Desc ...
- affe(8) solver 优化方法
上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: &q ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- Caffe学习系列——工具篇:神经网络模型结构可视化
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...
随机推荐
- git报错 error: cannot stat ‘file’: Permission denied
切换分支时报错: error: cannot stat ‘file’: Permission denied 解决方法:退出编辑器.浏览器.资源管理器等,然后再切换就可以了.
- swift2.2当中的inout参数的使用
在Swift中,初次接触inout关键字以及它的用法,可能会让我们想起C/C++中的指针,但实际上Swift中inout只不过是按值传递,然后再写回原变量,而不是按引用传递: An in-out pa ...
- ios appIcon配置
iOS 我所知道的Assets.xcassets 字数923 阅读723 评论1 喜欢3 Assets.xcassets是用来存放图像资源文件的.将一个图片放在Assets里面是这个样子的 目录结构 ...
- XCode的代码块备份
以上三个的注释可以从下面的代码依据个数拷贝和删除: /** * <#comment#> * * @param <#one#> * * @param <#two#> ...
- 关于Redis中的serverCron
1.serverCron简介 在 Redis 中, 常规操作由 redis.c/serverCron 实现, 它主要执行以下操作 /* This is our timer interrupt, cal ...
- 问题解决——使用串口调试助手发送控制字符 协议指令 <ESC>!?
外行指挥内行的结果就是,你必须按照他想的去做,等做不出来再用自己的办法,而且必须如此. -------------------------------------------------------- ...
- iOS -数据库网络之xml解析之远程解析XML
1.IOS中XML文件获取 //设置远程访问地址 NSURL *url=[NSURL URLWithString:@""]; //创建动态URL请求,并初 ...
- SSH 端口映射(一)
转载:http://blog.csdn.net/a351945755/article/details/21785647,http://blog.csdn.net/gaoming655/article/ ...
- C#与MATLAB混合编程
C#和MatLab的混合编程,充分利用了winform的直观显示和matlab的强大计算能力.在此以一个小例子的形式给大家讲述一下二者混合编程的实现. 一.软件的配置说明 C#版本:VS2010 ma ...
- Android+Sqlite 实现古诗阅读应用(一)
不说网络app,很多本地的app都有一些随机的内容推送,比如随机推送一些小知识,古诗,名言名画什么的,界面制作的好看一点就能看起来特别的文艺范, 最近就是看了这样的一些应用,就想自己实现一下,这种方法 ...