1. 病态系统

现在有线性系统: Ax = b, 解方程

很容易得到解为: x1 = -100, x2 = -200. 如果在样本采集时存在一个微小的误差,比如,将 A 矩阵的系数 400 改变成 401:

则得到一个截然不同的解: x1 = 40000, x2 = 79800.

当解集 x 对 A 和 b 的系数高度敏感,那么这样的方程组就是病态的 (ill-conditioned).

2. 条件数

那么,如何评价一个方程组是病态还是非病态的呢?在此之前,需要了解矩阵和向量的 norm, 这里具体是计算很简单的 infinity norm, 即找行绝对值之和最大,举个例子:

infinity norm 具有三角性质:||x+y|| <= ||x|| + ||y||. 理解了这些概念,下面讨论一下衡量方程组病态程度的条件数,首先假设向量 b 受到扰动,导致解集 x 产生偏差:

即有:

同时,由于

综合上面两个不等式:

即得到最终的关系:

如果是矩阵 A 产生误差,同样可以得到:

其中, 条件数定义为:

一般来说,方程组解集的精度大概是 个十进制的位的误差。 比如,IEEE 标准表示的双精度浮点数的有效位是 16 位,如果条件数是 1e+10, 那么得到的结果中只有 6 位是精确的。所以,只有当方程组是良态时,残差 R = Ax - b 才能准确指示解的精度。

3. 病态的由来

自己的看法:

线性系统 Ax = b 为什么会病态?归根到底是由于 A 矩阵列向量线性相关性过大,表示的特征太过于相似以至于容易混淆所产生的。举个例子, 现有一个两个十分相似的列向量组成的矩阵 A:

在二维空间上,这两个列向量夹角非常小。假设第一次检测得到数据 b = [1000, 0]^T, 这个点正好在第一个列向量所在的直线上,解集是 [1, 0]^T。现在再次检测,由于有轻微的误差,得到的检测数据是 b = [1000, 0.001], 这个点正好在第二个列向量所在的直线上,解集是 [0, 1]^T。两次求得到了差别迥异的的解集。

4. 与特征值和 SVD 的关系

  1. 特征值

假设 A 的两个单位特征向量是 x1, x2, 根据特征向量的性质:

上述矩阵 A 的特征值和特征向量分别为:

对于平面上的某一个向量 b,可以分解为两个特征向量的线性组合:

把上式带入,

如果  远远大于 , 当 b 点在 x1 方向发生移动, m 值改变, 解集 x 变化不明显, 反之, 如果在 x2 方向移动, n 值改变,解集 x 变化非常大 !可以看到,特征值对解集起到了一个 scaling 的作用。反过来说,如果一个特征值比其它特征值在数量级上小很多,x在对应特征向量 (x2) 方向上很大的移动才能产生b微小的变化.

        2.  SVD

SVD 分解:

联系上次学到的 SVD 知识,将 A 分解成三个矩阵的乘积,中间的对角线矩阵也起到了 scaling 的作用。我们按照正向思维来考虑这个问题,现在来了一个解集 x 向量,左乘 A 矩阵等价与左乘 USV^T, x 向量正好等于 V^T 最后一行向量,经过 S 矩阵的 scaling 缩小之后对 b 的影响非常小。也就是说, 解集 x 在 V^T 最后一行的行向量方向自由度最大!自由度越大,越不稳定,极端情况是该方向奇异值为 0, 解集可以在该方向取任意值,这也正好对应了矩阵 A 有零特征值, Ax 在对应特征向量的方向上移动不改变 Ax 的值。

在不同的 norm 下,条件数又可以由最大奇异值与最小奇异值之间的比值,或者最大特征值和最小特征值之间比值的绝对值来表示,详情请参考维基百科

最后, A 的条件数究竟等于多少呢? cond(A) = 2e+06

5. 病态矩阵处理方法

真正的自由是建立在规范的基础上的。病态矩阵解集的不稳定性是由于解集空间包含了自由度过大的方向,解决这个问题的关键就是将这些方向去掉,而保留 scaling 较大的方向,从而把解集局限在一个较小的区域内。在上面的讨论中, A 矩阵的特征向量不一定正交,不适合做新基, SVD 分解正好分解出了正交基,可以选前 k 个 v^T 向量作为正交基。

比如,现在只选取前一个 (0.707, 0.707) 方向作为基,解集局限咋 y = x 这条直线上。直观的解释就是, A 矩阵的两个列向量过于类似,我们就可以将它们等同看待,第一次 b = (1000, 0), 解集是(0.5, 0.5), 第二次 b = (1000, 0.001), 解集还是 (0.5, 0.5).

总结起来,解决 A 病态就是将解集限定在一组正交基空间内,即对于坐标 y, 选择 k 个正交基 Zk,解决问题:

这个就是 reduce-rank model. 具体方法有 truncated SVD 和 Krylov subspace method。


参考资料:

(1) ILL-Conditioned Systems

机器学习中的矩阵方法(附录A): 病态矩阵与条件数的更多相关文章

  1. 机器学习(十三)——机器学习中的矩阵方法(3)病态矩阵、协同过滤的ALS算法(1)

    http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−− ...

  2. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  3. 机器学习中的矩阵方法04:SVD 分解

    前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...

  4. 机器学习中的标准化方法(Normalization Methods)

    希望这篇随笔能够从一个实用化的角度对ML中的标准化方法进行一个描述.即便是了解了标准化方法的意义,最终的最终还是要:拿来主义,能够在实践中使用. 动机:标准化的意义是什么? 我们为什么要标准化?想象我 ...

  5. 再谈机器学习中的归一化方法(Normalization Method)

    机器学习.数据挖掘工作中,数据前期准备.数据预处理过程.特征提取等几个步骤几乎要花费数据工程师一半的工作时间.同时,数据预处理的效果也直接影响了后续模型能否有效的工作.然而,目前的大部分学术研究主要集 ...

  6. CSS3中的矩阵

    CSS3中的矩阵 CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform),后者则是3D变换.2D变换矩阵为3*3,如下面矩阵示 ...

  7. 机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探

    1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去 ...

  8. 控制算法的划分(自适应控制、预测控制、模糊控制等,PID等;蚁群算法、神经网络,还有机器学习、人工智能中的很多方法)

    一般来说,控制器的设计,分为控制框架的选取,跟参数的优化.自适应控制.预测控制.模糊控制等,跟PID一样,是控制算法(我习惯称为控制框架). 而粒子群.遗传算法(类似的还有蚁群算法.神经网络,还有机器 ...

  9. Spark机器学习中ml和mllib中矩阵、向量

    1:Spark ML与Spark MLLIB区别? Spark MLlib是面向RDD数据抽象的编程工具类库,现在已经逐渐不再被Spark团队支持,逐渐转向Spark ML库,Spark ML是面向D ...

随机推荐

  1. 仅IE6中链接A的href为javascript协议时不能在当前页面跳转

    切页面时有时用链接A来替代按钮,这样做有几个好处 鼠标放上时默认有手状效果(不用添加cursor:pointer) 可以添加低版本IE都支持的伪类 如果点击时页面要整体刷新,即跳转,这时IE6则不尽人 ...

  2. Python 元组知识点

    1.元组是一个有序的集合,2.元组和列表一样可以使用索引.切片来取值.3.创建元组后不能在原地进行修改替换等操作.4.元组支持嵌套,可以包含列表.字典和不同元组.5.元组支持一般序列的操作,例如:+. ...

  3. Android分步注册,Activity由B返回A修改再前往B,B中已填项不变

    某日突然想到标题问题,一般来说返回上一个Activity,当前Activity应该自动销毁.要想保留值,便想到用bundle传递的方式 最后功能是实现了,但感觉方法很笨. 主要代码如下: packag ...

  4. 4412开发板Android教程——Android平台简介

    本文转自迅为开发板论坛:http://www.topeetboard.com Android和IOS Android的历史 Android公司 2005年Google收购成立22个月的Android公 ...

  5. 《TCP/IP详解 卷一》读书笔记-----TCP数据流

    1.Delayed Acknowledgements:TCP通常不会在收到数据之后立即返回一个ACK,而是会有一个延时,希望能ACK报文段中带上一些数据,通常这个延时为200ms 2.Nagle Al ...

  6. selenium如何分别启动IE、firefox、chrome浏览器

    1.火狐浏览器 /* * 初始化火狐浏览器 * */ public static WebDriver initFireFox(WebDriver dr) { String key = "we ...

  7. 【读书笔记《Android游戏编程之从零开始》】1.Android 平台简介与环境搭建

    简单的记录下笔记,具体可百度! Android SDK (Software Development Kit)- Android 软件开发工具包,用于辅助Android 操作系统软件开发,是开发Andr ...

  8. 使用Android Studio搭建Android集成开发环境(图文教程)

    ​[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/ ...

  9. Apache Shiro权限框架在SpringMVC+Hibernate中的应用

    在做网站开发中,用户权限必须要考虑的,权限这个东西很重要,它规定了用户在使用中能进行哪 些操作,和不能进行哪些操作:我们完全可以使用过滤器来进行权限的操作,但是有了权限框架之后,使用起来会非常的方便, ...

  10. 关于tcpdump抓包一个很详细的介绍

    http://www.cnblogs.com/ggjucheng/archive/2012/01/14/2322659.html