方法1 二分+暴力+前缀和Check

注意细节

通过二维前缀和判定矩形内是否全为1,计算和等于长度的平方就判断为是

复杂度\(\Theta (n^2\log{n})\)

#include <bits/stdc++.h>

#define N (int)(105)

using namespace std;

int mp[N][N];
int s[N][N];
int n,m; bool check(int lenth)
{
for(int i = 1;i + lenth - 1 <= n;i++)
{
for(int j = 1;j + lenth - 1 <= m;j++)
{
if(s[i + lenth - 1][j + lenth - 1] - s[i-1][j + lenth - 1] - s[i + lenth - 1][j-1] + s[i-1][j-1] == lenth * lenth)//
{
return true;
}
}
}
return false;
} int main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin >> n >> m;
for(int i = 1;i <= n;i++)
{
for(int j =1;j <= m;j++)
{
cin >> mp[i][j];
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + mp[i][j];
}
} int l = 1, r = min(n,m);
while(l < r)
{
int mid = (l + r) / 2 + 1;
if(check(mid)) l = mid;
else r = mid - 1;
}
cout << l;
return 0;
}

方法2 DP

设状态\(f_{i,j}\)为以第\(i\)行\(j\)列为右下角的最大正方形的边长,\(a_{i,j}\)表示输入矩阵中的数值,有转移方程:

\[f_{i,j} = (min(f_{i-1,j},f_{i,j-1},f_{i-1,j-1}) + 1) * a_{i,j}
\]

解释:考虑\(a_{i,j}\)为0,那么\(f_{i,j}\)为零是正确的。

\(a_{i,j}\)不为0,那么最少边长就是1,考虑像上向右延伸边,由于正方形的相关性质,取可以延伸的宽和高的最小,可以延伸的高就是\(min(f_{i-1,j},f_{i-1,j-1})\), 可延伸的宽就是\(min(f_{i,j-1},f_{i-1,j-1})\)。这样就解释完了。

不过我们可以逆向思考一下如何想出这种DP,首先我们是拿一块已经确定了的正方形然后考虑如何将它拓展(刷表思路);或者我们思考如何将其他正方形的交拼成一个新的正方形(填表思路)。

我们画出一幅由1(或者0)组成的地图,并在其中寻找正方形。(建议画图)

刷表思路:我们考虑将一个正方形扩展到它右下一格的位置,那么我们发现,根据状态的定义,右下正方形最大边长,就是1加上当前最大正方形的边长,更长的边长是不支持的。然后我们发现还需要两个条件,就是下侧和右侧两个“条”状部位需要全部都是1,那么这里就可以推出\(min\)的使用了。可见思考\(min\)可以先固定化一部分,再想另一部分。

填表思路:我们考虑以一个位置为右下角、某个固定大小的正方形,如何用三个正方形把它拼出来(取交集),实际上我们发现,我们把右下角刨去之后,观察剩下的部分,需要\(f_{i-1,j},f_{i,j-1},f_{i-1,j-1}\)综合判断,不能缺在边上(\(f_{i-1,j},f_{i,j-1},\)),也不能缺在左上角(\(f_{i-1,j-1}\)),对于这三个量的贡献,我们固定其他两个,看其中一个,都能够发现\(min\)的贡献关系。

总结:设置状态的时候占右下角,是为了带最优性质和推理基础;转移的时候从具体例子考虑。

#include <bits/stdc++.h>

#define N (int)(105)

using namespace std;

int mp[N][N];
int f[N][N];
int n,m,ans; int main()
{
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin >> n >> m;
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= m;j++)
{
cin >> mp[i][j];
}
}
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= m;j++)
{
f[i][j] = (min(min(f[i-1][j-1],f[i-1][j]),f[i][j-1]) + 1) * mp[i][j];
ans = max(ans,f[i][j]);
}
}
cout << ans; return 0;
}

洛谷 P1387 最大正方形 题解的更多相关文章

  1. 洛谷 p1387最大正方形

    洛谷 p1387最大正方形 题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入格式 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来 ...

  2. 洛谷P1387 最大正方形

    题目描述 题目链接:https://www.luogu.org/problemnew/show/P1387 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输 ...

  3. 洛谷 P1387 最大正方形 【dp】(经典)

    题目链接:https://www.luogu.org/problemnew/show/P1387 题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入格式: 输入 ...

  4. 洛谷 P1387 最大正方形 Label:奇怪的解法

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  5. 洛谷 [P1387] 最大正方形

    本题非常有趣. (n^6) 枚举四个端点,每次遍历矩阵求解. (n^4) 先处理前缀和,枚举四个端点,每次比较前缀和和正方形面积. (n^3) 枚举左上方端点,在枚举边长,前缀和优化 (n^2logn ...

  6. 洛谷P1387最大正方形(dp,前缀和)

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  7. (Java实现) 洛谷 P1387 最大正方形

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  8. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  9. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  10. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

随机推荐

  1. ET中热更(ILRuntime)使用过程中,需要做的适配器,比如Linq排序

    ET中热更(ILRuntime)使用过程中,需要做的适配器,比如Linq排序 By Flamesky 最近项目中用到个Linq的排序,由于没有注册适配器,导致不能用,其实ILRT作者已经做得很好,报错 ...

  2. Navicat Premium 16 安装教程

    使用数据库时经常会使用到Navicat,码一个教程 转载自https://www.bilibili.com/read/cv21586676?spm_id_from=444.41.list.card_a ...

  3. 2022-06-11:注意本文件中,graph不是邻接矩阵的含义,而是一个二部图。 在长度为N的邻接矩阵matrix中,所有的点有N个,matrix[i][j]表示点i到点j的距离或者权重, 而在二部

    2022-06-11:注意本文件中,graph不是邻接矩阵的含义,而是一个二部图. 在长度为N的邻接矩阵matrix中,所有的点有N个,matrix[i][j]表示点i到点j的距离或者权重, 而在二部 ...

  4. 2021-10-14:被围绕的区域。给你一个 m x n 的矩阵 board ,由若干字符 ‘X‘ 和 ‘O‘ ,找到所有被 ‘X‘ 围绕的区域,并将这些区域里所有的 ‘O‘ 用 ‘X‘ 填充。力扣1

    2021-10-14:被围绕的区域.给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充.力扣1 ...

  5. Python随机UserAgent库,让你不再手动敲UA!

    前言 之前也懵懵懂懂写过python爬虫,但是经常被网站的反爬机制干趴下,然后手动写了个随机UA库,情况才好些.今天在互联网畅游时发现,有一个能够产生随机UA的第三方库! 安装第三方库 老生常谈啦,p ...

  6. 2015年蓝桥杯C/C++大学B组省赛真题(星系炸弹)

    题目描述: 在X星系的广袤空间中漂浮着许多X星人造"炸弹",用来作为宇宙中的路标. 每个炸弹都可以设定多少天之后爆炸. 比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在 ...

  7. ORM核心功能之导航属性- EFCore和 SqlSugar

    导航属性 导航属性是作为ORM核心功能中的核心,在SqlSugar没有支持导航属性前,都说只是一个高级DbHelper, 经过3年的SqlSugar重构已经拥有了一套 非常成熟的导航属性体系,本文不是 ...

  8. 南洋才女,德艺双馨,孙燕姿本尊回应AI孙燕姿(基于Sadtalker/Python3.10)

    孙燕姿果然不愧是孙燕姿,不愧为南洋理工大学的高材生,近日她在个人官方媒体博客上写了一篇英文版的长文,正式回应现在满城风雨的"AI孙燕姿"现象,流行天后展示了超人一等的智识水平,行文 ...

  9. CMU15445 (Fall 2020) 之 Project#1 - Buffer Pool 详解

    前言 去年暑假完成了 CMU15-445 Fall 2019 的四个实验,分别对应下述博客: CMU15445 (Fall 2019) 之 Project#1 - Buffer Pool 详解 CMU ...

  10. 尚医通day09-【用户平台搭建详细步骤】(内附源码)

    页面预览 首页 医院详情 第01章-服务器端渲染和客户端渲染 1.搜索引擎优化 1.1.什么是搜索引擎优化 SEO 是网站为了获得更多的流量,对网站的结构及内容进行调整和优化,以便搜索引擎 (百度,g ...