【bzoj4514】 Sdoi2016—数字配对
http://www.lydsy.com/JudgeOnline/problem.php?id=4514 (题目链接)
题意
n个数,每个数值为a[i],有b[i]个,权值为c[i]。若两个数能配对当且仅当a[i]|a[j]并且a[i]/a[j]是一个质数,并获得一个价值c[i]*c[j]。
Solution
这不是费用流板子吗,无脑连边跑费用流,结果就是Wa,调,Wa,调。。。没想到建图建错了,要建成二分图,左集的数质因子个数为奇数,右集的数质因子个数为偶数。那么显然两集中的点不可能存在边。
细节
该开LL的开LL。
代码
// bzoj4514
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 1ll<<60
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=210,maxm=1000010;
struct edge {int from,to,next;LL w,c;}e[maxm];
int head[maxm],p[maxm],vis[maxm],fa[maxm];
LL f[maxm],dis[maxm],ans;
int cnt=1,es,et,n,m,res,a[maxn],b[maxn],c[maxn],col[maxn]; void link(int u,int v,LL w,LL c) {
e[++cnt]=(edge){u,v,head[u],w,c};head[u]=cnt;
e[++cnt]=(edge){v,u,head[v],0,-c};head[v]=cnt;
}
bool check(int k) {
for (int i=1;i<=p[0];i++) {
if (k%p[i]==0) return k==p[i];
if (sqrt(k)<=p[i]) break;
}
return 1;
}
bool SPFA() {
queue<int> q;
for (int i=1;i<=et;i++) dis[i]=-inf,fa[i]=f[i]=0;
q.push(es);dis[es]=0;f[es]=inf;
while (!q.empty()) {
int x=q.front();q.pop();vis[x]=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && dis[e[i].to]<dis[x]+e[i].c) {
dis[e[i].to]=dis[x]+e[i].c;
f[e[i].to]=min(e[i].w,f[x]);
fa[e[i].to]=i;
if (!vis[e[i].to]) q.push(e[i].to),vis[e[i].to]=1;
}
}
LL F=f[et];
if (dis[et]<0) F=min(F,-ans/dis[et]);
if (F==0 || dis[et]==-inf) return 0;
ans+=dis[et]*F;res+=F;
for (int i=fa[et];i;i=fa[e[i].from]) e[i].w-=F,e[i^1].w+=F;
return 1;
}
int EK() {
res=0;
while (SPFA());
return res;
}
int main() {
scanf("%d",&n);
for (int i=2;i<=100000;i++) if (!vis[i]) {
p[++p[0]]=i;
for (int j=i+i;j<=100000;j+=i) vis[j]=1;
}
memset(vis,0,sizeof(vis));
es=2*n+1,et=es+1;
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
for (int i=1;i<=n;i++) scanf("%d",&b[i]);
for (int i=1;i<=n;i++) scanf("%d",&c[i]);
for (int i=1;i<=n;i++) {
int tmp=0,x=a[i];
for (int j=1;j<=p[0];j++) {
while (x%p[j]==0) x/=p[j],tmp++;
if (x==1) break;
}
if (tmp&1) link(es,i,b[i],0),col[i]=1;
else link(i,et,b[i],0);
}
for (int i=1;i<=n;i++) if (col[i]) {
for (int j=1;j<=n;j++)
if ((a[i]!=a[j] && a[i]%a[j]==0 && check(a[i]/a[j])) ||(a[i]!=a[j] && a[j]%a[i]==0 && check(a[j]/a[i])))
link(i,j,inf,(LL)c[i]*c[j]);
}
printf("%d",EK());
return 0;
}
【bzoj4514】 Sdoi2016—数字配对的更多相关文章
- BZOJ4514——[Sdoi2016]数字配对
有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...
- bzoj4514 [Sdoi2016]数字配对
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- BZOJ4514[Sdoi2016]数字配对——最大费用最大流
题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...
- bzoj4514 [Sdoi2016]数字配对(网络流)
Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...
- [bzoj4514][SDOI2016]数字配对——二分图
题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...
- BZOJ4514 [Sdoi2016]数字配对 【费用流】
题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...
- bzoj4514: [Sdoi2016]数字配对--费用流
看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...
- bzoj4514: [Sdoi2016]数字配对(费用流)
传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...
- 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流
[bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...
- 【BZOJ4514】[Sdoi2016]数字配对 费用流
[BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...
随机推荐
- ThinkPHP3快速入门教程二:数据CURD
CURD(创建[Create].更新[Updata].读取[Read].删除[Delete]),定义了用于处理数据的基本原子操作. CURD在具体的应用中并非一定使用create.updata.rea ...
- VirtualBox + vagrant
VirtualBox 虚拟机不必多说 vagrant 是ruby编写的VirtualBox的命令行镜像管理工具 1 先安装VirtualBox 然后 安装 vageant 下载地址 googl ...
- Crontab定时任务配置
CRONTAB概念/介绍 crontab命令用于设置周期性被执行的指令.该命令从标准输入设备读取指令,并将其存放于“crontab”文件中,以供之后读取和执行. cron 系统调度进程. 可以使用它在 ...
- DB2 JDBC
官方文档: http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.apdv.java.doc/src/ ...
- MongoDB学习笔记~为IMongoRepository接口添加了增删改方法,针对官方驱动
回到目录 上一讲说了MongoDB官方驱动的查询功能,这回说一下官方驱动的增删改功能,驱动在升级为2.0后,相应的insert,update和delete都只有了异步版本(或者叫并行版本),这当然也是 ...
- 每建一个Activity都要注册权限Manifest.xml
每建一个Activity都要注册权限Manifest.xml 但是有时候自动注册好了,注意!不然的话是不能调用的!!!!!<activity android:name=".MainVi ...
- S3C6410移植apache和php
需要准备的东西: Apache-1.3.39 for linux Php-4.4.8 for linux Ubuntu amd64位 PC机 6410开发板,我用的是友善之臂 交叉编译: 交叉编译呢, ...
- PKCS#1规范阅读笔记1--------基本概念
规范中有很多数学相关的推演和计算,并不打算在这里介绍,主要介绍一下相关的计算流程及最终的签名结果. 算法可以分为:对称算法和非对称算法两大类.对称算法加密和解密都用的是同一个密钥:而非对称算法却是有一 ...
- 聊天室(Java实现)
功能: 登录 若用户账号不存在,弹出错误 若用户密码错误,弹出错误 若用户账号已在线,弹出错误 注册 若用户已注册,弹出错误 聊天室 多人聊天,类似QQ里的群. 点击右侧的在线用户,可进行一对一聊天. ...
- unity 绘制三角形
哎 该学的还是要学 参考:http://www.narkii.com/club/thread-369573-1.html unity 顶点绘制三角形 脚本绘制; 其实filter和render就是进行 ...