http://www.lydsy.com/JudgeOnline/problem.php?id=4514 (题目链接)

题意

  n个数,每个数值为a[i],有b[i]个,权值为c[i]。若两个数能配对当且仅当a[i]|a[j]并且a[i]/a[j]是一个质数,并获得一个价值c[i]*c[j]。

Solution

  这不是费用流板子吗,无脑连边跑费用流,结果就是Wa,调,Wa,调。。。没想到建图建错了,要建成二分图,左集的数质因子个数为奇数,右集的数质因子个数为偶数。那么显然两集中的点不可能存在边。

细节

  该开LL的开LL。

代码

// bzoj4514
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 1ll<<60
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=210,maxm=1000010;
struct edge {int from,to,next;LL w,c;}e[maxm];
int head[maxm],p[maxm],vis[maxm],fa[maxm];
LL f[maxm],dis[maxm],ans;
int cnt=1,es,et,n,m,res,a[maxn],b[maxn],c[maxn],col[maxn]; void link(int u,int v,LL w,LL c) {
e[++cnt]=(edge){u,v,head[u],w,c};head[u]=cnt;
e[++cnt]=(edge){v,u,head[v],0,-c};head[v]=cnt;
}
bool check(int k) {
for (int i=1;i<=p[0];i++) {
if (k%p[i]==0) return k==p[i];
if (sqrt(k)<=p[i]) break;
}
return 1;
}
bool SPFA() {
queue<int> q;
for (int i=1;i<=et;i++) dis[i]=-inf,fa[i]=f[i]=0;
q.push(es);dis[es]=0;f[es]=inf;
while (!q.empty()) {
int x=q.front();q.pop();vis[x]=0;
for (int i=head[x];i;i=e[i].next) if (e[i].w && dis[e[i].to]<dis[x]+e[i].c) {
dis[e[i].to]=dis[x]+e[i].c;
f[e[i].to]=min(e[i].w,f[x]);
fa[e[i].to]=i;
if (!vis[e[i].to]) q.push(e[i].to),vis[e[i].to]=1;
}
}
LL F=f[et];
if (dis[et]<0) F=min(F,-ans/dis[et]);
if (F==0 || dis[et]==-inf) return 0;
ans+=dis[et]*F;res+=F;
for (int i=fa[et];i;i=fa[e[i].from]) e[i].w-=F,e[i^1].w+=F;
return 1;
}
int EK() {
res=0;
while (SPFA());
return res;
}
int main() {
scanf("%d",&n);
for (int i=2;i<=100000;i++) if (!vis[i]) {
p[++p[0]]=i;
for (int j=i+i;j<=100000;j+=i) vis[j]=1;
}
memset(vis,0,sizeof(vis));
es=2*n+1,et=es+1;
for (int i=1;i<=n;i++) scanf("%d",&a[i]);
for (int i=1;i<=n;i++) scanf("%d",&b[i]);
for (int i=1;i<=n;i++) scanf("%d",&c[i]);
for (int i=1;i<=n;i++) {
int tmp=0,x=a[i];
for (int j=1;j<=p[0];j++) {
while (x%p[j]==0) x/=p[j],tmp++;
if (x==1) break;
}
if (tmp&1) link(es,i,b[i],0),col[i]=1;
else link(i,et,b[i],0);
}
for (int i=1;i<=n;i++) if (col[i]) {
for (int j=1;j<=n;j++)
if ((a[i]!=a[j] && a[i]%a[j]==0 && check(a[i]/a[j])) ||(a[i]!=a[j] && a[j]%a[i]==0 && check(a[j]/a[i])))
link(i,j,inf,(LL)c[i]*c[j]);
}
printf("%d",EK());
return 0;
}

  

【bzoj4514】 Sdoi2016—数字配对的更多相关文章

  1. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  2. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  3. BZOJ4514[Sdoi2016]数字配对——最大费用最大流

    题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...

  4. bzoj4514 [Sdoi2016]数字配对(网络流)

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  5. [bzoj4514][SDOI2016]数字配对——二分图

    题目描述 传送门 题解: 这个题真的是巨坑,经过了6个WA,2个TLE,1个RE后才终于搞出来,中间都有点放弃希望了... 主要是一定要注意longlong! 下面开始说明题解. 朴素的想法是: 如果 ...

  6. BZOJ4514 [Sdoi2016]数字配对 【费用流】

    题目 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×c ...

  7. bzoj4514: [Sdoi2016]数字配对--费用流

    看了一眼题目&数据范围,觉得应该是带下界的费用流 原来想拆点变成二分图,能配对的连边,跑二分图,可行性未知 后来看到另外一种解法.. 符合匹配要求的数要满足:质因子的个数相差为1,且两者可整除 ...

  8. bzoj4514: [Sdoi2016]数字配对(费用流)

    传送门 ps:费用流增广的时候费用和流量打反了……调了一个多小时 每个数只能参与一次配对,那么这就是一个匹配嘛 我们先把每个数分解质因数,记质因子总个数为$cnt_i$,那如果$a_i/a_j$是质数 ...

  9. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  10. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

随机推荐

  1. 解决 安装cocoapods失败,提示 requires Ruby version >=2.2.2

    步骤如下: rvm install ruby-2.2 但是,但是竟然报错了,具体我忘记额,但是是权限和brew的问题,那么我又转向修复brew: // 清理原来brew rm -rf /usr/loc ...

  2. 适配iOS 10以及Xcode 8(转载)

    一.证书管理 用Xcode8打开工程后,比较明显的就是下图了,这个是苹果的新特性,可以帮助我们自动管理证书.建议大家勾选这个Automatically manage signing(Ps.但是在bea ...

  3. Nginx搭建反向代理服务器过程详解

    一.反向代理:Web服务器的“经纪人” 1.1 反向代理初印象 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从 ...

  4. ORACLE 12C新特性——CDB与PDB

    Oracle 12C引入了CDB与PDB的新特性,在ORACLE 12C数据库引入的多租用户环境(Multitenant Environment)中,允许一个数据库容器(CDB)承载多个可插拔数据库( ...

  5. 把你的Project发布到GitHub上

    在上一篇文章中说明了如何使用远程仓库,接下来,就使用常用远程仓库GitHub来管理你的project. 1)在GitHub上创建仓库 要使用GitHub,肯定要注册GitHub帐户,然后建立一个仓库. ...

  6. 封装RabbitMQ.NET Library 的一点经验总结

    这篇文章内容会很短,主要是想给大家分享下我最近在做一个简单的rabbitmq客户端类库的封装的经验总结,说是简单其实一点都不简单.为了节省时间我主要按照Library的执行顺序来介绍,在你看来这里仅仅 ...

  7. 设计模式C#实现(十五)——命令模式

    意图 0 适用性 1 结构 2 实现 3 效果 4 参考 5 意图 将请求封装成一个对象,客户接受请求参数:可以对请求排队或者记录请求日志,以及可以支持撤销操作 适用性 抽象出待执行的动作以参数化某对 ...

  8. laravel5源码讲解整理

    来源:http://yuez.me/laravel-yuan-ma-jie-du/?utm_source=tuicool&utm_medium=referral 目录 入口文件 index.p ...

  9. 理解 Node.js 里的 process.nextTick()

    有很多人对Node.js里process.nextTick()的用法感到不理解,下面我们就来看一下process.nextTick()到底是什么,该如何使用. Node.js是单线程的,除了系统IO之 ...

  10. ubuntu下安装lrzsz

    secureCRT中可以使用rz和sz命令上传和下载文件,可是这要linux中安装了lrzsz才可以.我用的时候无法使用apt-get自动安装,下面介绍手动安装的方法. 1 下载lrzsz软件  ht ...