施密特正交化 GramSchmidt
施密特正交化 GramSchmidt
施密特正交化的原名是 Gram–Schmidt process,是由Gram和schmidt两个人一起发明的,但是后来因为施密特名气更大,所以该方法被简记为施密特正交化。
借用 《线性代数》P117-例2 的例子来运行代码。
a_2 = (-1,3,1)^T \\
a_3 = (4,-1,0)^T
\]
正交化后:
a_2 = \frac{5}{3}(-1,1,1)^T \\
a_3 = 2(1,0,1)^T
\]
单位化后:
a_2 = \frac{1}{\sqrt{3}}(-1,3,1)^T \\
a_3 = \frac{1}{\sqrt{2}}(4,-1,0)^T
\]
代码实现
python3 的 sympy 包实现了 GramSchmidt 方法。
from sympy.matrices import Matrix, GramSchmidt
l = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]
o = GramSchmidt(l)
计算结果如下:
[Matrix([
[ 1],
[ 2],
[-1]]),
Matrix([
[-5/3],
[ 5/3],
[ 5/3]]),
Matrix([
[2],
[0],
[2]])]
单位化也就是在调用函数的时候传入参数。
from sympy.matrices import Matrix, GramSchmidt
l = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]
o = GramSchmidt(l, True)
计算结果如下:
[Matrix([
[ sqrt(6)/6],
[ sqrt(6)/3],
[-sqrt(6)/6]]),
Matrix([
[-sqrt(3)/3],
[ sqrt(3)/3],
[ sqrt(3)/3]]),
Matrix([
[sqrt(2)/2],
[ 0],
[sqrt(2)/2]])]
sympy.Matrix 与 Numpy 的互操作
Matrix 转 Numpy.array
import numpy as np
from sympy.matrices import Matrix, GramSchmidt
l = [Matrix([1,2,-1]), Matrix([-1,3,1]), Matrix([4,1,0])]
o = GramSchmidt(l, True)
m = np.array(o)
内积计算
(m[0] * m[1]).sum()
References
[1] https://en.wikipedia.org/wiki/Gram–Schmidt_process
[2] GramSchmidt. sympy: https://docs.sympy.org/latest/modules/matrices/matrices.html?highlight=gramschmidt#sympy.matrices.dense.GramSchmidt
施密特正交化 GramSchmidt的更多相关文章
- 浅谈压缩感知(十九):MP、OMP与施密特正交化
关于MP.OMP的相关算法与收敛证明,可以参考:http://www.cnblogs.com/AndyJee/p/5047174.html,这里仅简单陈述算法流程及二者的不同之处. 主要内容: MP的 ...
- Gram-Schmidt图像融合
遥感图像融合的定义是通过将多光谱低分辨率的图像和高分辨率的全色波段进行融合从而得到信息量更丰富的遥感图像.常用的遥感图像融合方法有Brovey\PCA\Gram-Schmidt方法.其中Gram-Sc ...
- 数字信号处理Day2-小波基与规范正交化
我们有这么一张灰度图64*64 我们能够定义出4096个基,各自是某一位是0其它是1,在这样的情况下,假设我们传输图片,那么就相当于传输原始数据 如果传到一半,网络坏了. 于是,我们得到 我们能够计算 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第一章:向量代数
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第一章:向量代数 学习目标: 学习如何使用几何学和数字描述 Vecto ...
- DX12龙书 01 - 向量在几何学和数学中的表示以及运算定义
0x00 向量 向量 ( vector ) 是一种兼具大小 ( magnitude ) 和方向的量. 0x01 几何表示 几何方法中用一条有向线段来表示一个向量,其中,线段长度代表向量的模,箭头的指向 ...
- 《3D Math Primer for Graphics and Game Development》读书笔记2
<3D Math Primer for Graphics and Game Development>读书笔记2 上一篇得到了"矩阵等价于变换后的基向量"这一结论. 本篇 ...
- Differential Geometry之第一章欧式空间
书籍:<微分几何>彭家贵 局部微分几何 第一章.欧式空间 1.1向量空间 (1)向量空间 a.向量空间是集合,集合中的元素需要定义加法和乘法运算.向量空间和n维数组空间R^n不是同一个概念 ...
- Python爬取CSDN博客文章
0 url :http://blog.csdn.net/youyou1543724847/article/details/52818339Redis一点基础的东西目录 1.基础底层数据结构 2.win ...
- 自适应滤波:奇异值分解SVD
作者:桂. 时间:2017-04-03 19:41:26 链接:http://www.cnblogs.com/xingshansi/p/6661230.html 声明:欢迎被转载,不过记得注明出处哦 ...
随机推荐
- django上传excel文件
def uploadGrade(request): ''' 班级信息导入 :param request: :return: ''' if request.method == 'POST': f = r ...
- PHP 多个构造函数
class A { function __construct() { $a = func_get_args(); $i = func_num_args(); if (method_exists($th ...
- [Day25]IO(Properties、序列化流、打印流、Commons-IO)
1.Properties类-持久的属性集,可保存在流中或从流中加载,属性列表中每个键及其对应值都是一个字符串 1.1 特点 (1)Hashtable的子类,map集合中的方法都可以用 (2)该集合没有 ...
- Android字符串,颜色,尺寸资源的使用
字符串.颜色.尺寸资源文件这三种文件位于res文件夹的values文件夹中,名称分别为strings.xml , colors.xml , dimens.xml下面是例子,首先来看字符串资源文件str ...
- spring 相关注解详情(一)
1.@controller 控制器(注入服务) 用于标注控制层,相当于struts中的action层2.@service 服务(注入dao) 用于标注服务层,主要用来进行业务的逻辑处理3.@repos ...
- Elasticsearch学习笔记(十一)Mapping原理
一.Mapping的功能作用 Mapping是定义如何存储和索引一个document及其所包含字段的过程. Mapping是index和type的元数据,每个type都有自己的一个mapping,决定 ...
- awk 实战
awk 一些好玩的用法.有什么不错的点子可以留言,发挥出awk牛逼功能 分离mac地址 ifconfig wlan0 | grep eth | awk '{n=split($2,arr,": ...
- CF1142C U2
题目链接:洛谷 codeforces $y>x^2+bx+c$也就是$y-x^2>bx+c$ 左边是点,右边是直线. 维护上凸包. 虽然这么简单但就是做不出来. #include<c ...
- pkg-config 详解
转载自:https://blog.csdn.net/newchenxf/article/details/51750239 1 什么是pkg-config pkg-config是一个linux下的命令, ...
- pymongo基础
PyMongo是MongoDB数据库的python模块 MongoDB是由C++语音编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统. win10 安装 4.0 使用官网的配置 使用 n ...