[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构
试讨论 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 的类型.
解答: 由 (5. 33), (5. 39) 知 $$\bex 0=\cfrac{\p p}{\p \tau}\sex{\cfrac{\p \tau}{\p t'}-\cfrac{\p u_1}{\p m}}+\cfrac{\p p}{\p S}\cfrac{\p S}{\p t'} =\cfrac{\p p}{\p t'}-p'(\tau)\cfrac{\p u_1}{\p m}, \eex$$ 而 $$\bex \cfrac{-1}{p'(\tau)}\cfrac{\p p}{\p t'}+\cfrac{\p u_1}{\p m}=0. \eex$$ 于是 (5. 33)-(5. 39) 为 $$\beex \bea \cfrac{-1}{p'(\tau)}\cfrac{\p p}{\p t'}+\cfrac{\p u_1}{\p m} &=0,\\ \cfrac{\mu_0}{\rho}\cfrac{\p H_2}{\p t'} +\mu_0H_2\cfrac{\p u_1}{\p m}-\mu_0H_1\cfrac{\p u_2}{\p m} &=0,\\ \cfrac{\mu_0}{\rho}\cfrac{\p H_3}{\p t'} +\mu_0H_3\cfrac{\p u_1}{\p m} -\mu_0H_1\cfrac{\ pu_3}{\p m} &=0,\\ \cfrac{\p u_1}{\p t'} +\cfrac{\p\rho}{\p m} +\mu_0H_2\cfrac{\p H_2}{\p m} +\mu_0H_3\cfrac{\p H_3}{\p m}&=F_1,\\ \cfrac{\p u_2}{\p t'}-\mu_0H_1\cfrac{\p H_2}{\p m}&=F_2,\\ \cfrac{\p u_3}{\p t'}-\mu_0H_1\cfrac{\p H_3}{\p m}&=F_3,\\ \cfrac{\p S}{\p t'}&=0; \eea \eeex$$ 其可化为 $$\bex A(U)\cfrac{\p U}{\p t'}+B(U)\cfrac{\p U}{\p m}=C, \eex$$ 其中 $$\beex \bea U&=(p,H_2,H_3,u_1,u_2,u_3,S)^T,\\ A(U)&=\diag\sex{\cfrac{-1}{p'(\tau)},\cfrac{\mu_0}{\rho},\cfrac{\mu_0}{\rho}, 1,1,1,1},\\ B(U)&=\sex{\ba{ccccccc} 0&0&0&1&0&0&0\\ 0&0&0&\mu_0H_2&-\mu_0H_1&0&0\\ 0&0&0&\mu_0H_3&0&-\mu_0H_1&0\\ 1&\mu_0H_2\mu_0H_3&0&0&0&0\\ 0&-\mu_0H_1&0&0&0&0&0\\ 0&0&-\mu_0H_1&0&0&0&0\\ 0&0&0&0&0&0&0 \ea},\\ C&=(0,0,0,F_1,F_2,F_3,0)^T. \eea \eeex$$ 故 Lagrange 形式下的一维理想磁流体力学方程组 (5. 33)-(5. 39) 是一阶对称双曲组.
[物理学与PDEs]第3章习题6 Lagrange 坐标下的一维理想磁流体力学方程组的数学结构的更多相关文章
- [物理学与PDEs]第3章习题5 一维理想磁流体力学方程组的数学结构
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\ ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第2章习题11 Lagrange 形式的一维理想流体力学方程组在强间断线上的间断连接条件
对由第 10 题给出的 Lagrange 形式的一维理想流体力学方程组, 给出解在强间断线上应满足的间断连接条件 (假设体积力 $F\equiv 0$). 解答: $$\beex \bea \sez{ ...
- [物理学与PDEs]第1章习题12 Coulomb 规范下电磁场的标势、矢势满足的方程
试给出在 Coulomb 规范下, 电磁场的标势 $\phi$ 与矢势 ${\bf A}$ 所满足的方程. 解答: 真空中的 Maxwell 方程组为 $$\bee\label{1_10_12:eq} ...
- [物理学与PDEs]第1章习题3 常场强下电势的定解问题
在一场强为 ${\bf E}_0$ (${\bf E}_0$ 为常向量) 的电场中, 置入一个半径为 $R$ 的导电球体, 试导出球外电势所满足的方程及相应的定解条件. 解答: 设导电球体为 $B_R ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
随机推荐
- #022 Python 实验课
拍7游戏 描述 “拍7游戏”规则是:一堆人围成一圈,开始时,任意指定一人说出数字“1”后,一圈人按顺时针方向,每人按整数由小到大的顺序一人一个地报出后续数字“2”.“3”......,当遇到为“7”的 ...
- cpu iowait高排查的case
在之前的常见的Java问题排查方法一文中,没有写cpu iowait时的排查方法,主要的原因是自己之前也没碰到过什么cpu iowait高的case,很不幸的是在最近一周连续碰到了两起cpu iowa ...
- HTML DOM 事件对象 ondragend 事件
学习网站:http://www.runoob.com/jsref/event-ondragend.html 定义和用法 ondragend 事件在用户完成元素或首选文本的拖动时触发. 拖放是 HTML ...
- golang 解析XML
用adb操控android手机时,可以解析页面控件信息(xml) 代码如下: package main import ( "encoding/xml" "fmt" ...
- 大数据处理框架之Strom:Flume+Kafka+Storm整合
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 storm-0.9 apache-flume-1.6.0 ...
- Hive中知识点
hive的最新学习资料:http://www.cnblogs.com/qingyunzong/p/8707885.html hive的参数设置大全:https://cwiki.apache.org/c ...
- 一文搞懂Raft算法
raft是工程上使用较为广泛的强一致性.去中心化.高可用的分布式协议.在这里强调了是在工程上,因为在学术理论界,最耀眼的还是大名鼎鼎的Paxos.但Paxos是:少数真正理解的人觉得简单,尚未理解 ...
- Web Storage和cookie
Cookie的作用是与服务器进行交互,作为HTTP规范的一部分而存在 ,而Web Storage仅仅是为了在本地“存储”数据而生; Web Storage的概念和cookie相似,区别是它是为了更大容 ...
- gitignore的使用
gitignore的作用是忽略文件的提交,被加入到gitignore中的文件不会被提交到文件服务器 通常需要添加到.gitignore的文件有: (1)缓存相关文件,编译相关文件,运行时相关文件 (2 ...
- Python datetime模块的介绍
datetime模块常用的主要有下面这四个类:(要清楚import datetime : 导入的是datetime这个包,包里有各种类) 1. datetime.date 用于表示年月日构成的日期 ...