[ZJOI2019]麻将(动态规划,自动机)

题面

洛谷

题解

先做一点小铺垫,对于一堆牌而言,我们只需要知道这\(n\)张牌分别出现的次数就行了,即我们只需要知道一个长度为\(n\)的串就可以了。

首先考虑如何判断一副牌是不是能胡。

出现了七对牌的情况很容易特判处理掉,只需要考虑第一种情况。

那么我们考虑\(dp\)来判断,设\(f[i][j][k][0/1]\)表示的当前考虑到了这个字符串的第\(i\)位,即考虑到了第\(i\)种牌,\(i-1,i,i+1\)的对子要用\(j\)次,\(i,i+1,i+2\)的对子要用\(k\)次,是否已经出现了一个对子。而这个\(dp\)值表示的是能够留下的最大的面子数量。不难发现\(j,k\)都不会超过\(2\)。

那么转移的时候相当于读进来当前的\(i\)有多少个,假设是\(x\),接下来\(x\)减去\(j+k\)组成顺子,然后枚举一下以多少\(x\)为开头组成顺子。这里再枚举一下是否用当前的\(x\)组成对子或者刻字。

我们把第一维丢掉,只考虑剩下的\(18\)个元素和最大的可能对子数,并且强制\(dp\)值不超过\(4\),最大对子数不超过\(7\)。这样子就会存在大量重复的状态,打表可得状态只有不到\(2100\)种。

那么我们可以提前把所有状态全部预处理出来,预处理对于当前的一个状态,插入后面一种牌\(x\)张的结果,这样子就构成了一个自动机,那么我们只需要从头到尾把一种状态插入进去就可以知道有没有胡牌。

那么此时我们只需要知道抽了\(i\)张之后还未胡牌的概率,全部累加就是答案。

考虑在自动机上\(dp\),设\(f[i][p][k]\)表示当前考虑到第\(i\)种牌,且当前在自动机的\(p\)位置上,前面一共抽了\(k\)张牌且还没有胡的方案数。

转移的时候枚举这张牌用了多少次,用组合数带进去进行计算,通过自动机进行状态的转移。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
using namespace std;
#define MOD 998244353
#define MAX 402
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Data
{
int f[18],cnt;
void init(){memset(f,-1,sizeof(f));f[0]=cnt=0;}
bool check()
{
if(cnt>=7)return true;
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
if(f[9+i*3+j]>=4)return true;
return false;
}
}QwQ,ST[2100];
bool operator<(Data a,Data b)
{
if(a.cnt!=b.cnt)return a.cnt<b.cnt;
for(int i=0;i<18;++i)if(a.f[i]!=b.f[i])return a.f[i]<b.f[i];
return false;
}
Data Trans(Data a,int b)
{
Data c;c.init();c.cnt=min(a.cnt+(b>=2),7);
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
{
if(~a.f[i*3+j])
{
for(int k=0;k<3&&i+j+k<=b;++k)
c.f[j*3+k]=max(c.f[j*3+k],min(a.f[i*3+j]+i+(b-i-j-k>=3),4));
if(b>=2)
for(int k=0;k<3&&i+j+k<=b-2;++k)
c.f[9+j*3+k]=max(c.f[9+j*3+k],min(a.f[i*3+j]+i,4));
}
if(~a.f[9+i*3+j])
{
for(int k=0;k<3&&i+j+k<=b;++k)
c.f[9+j*3+k]=max(c.f[9+j*3+k],min(a.f[9+i*3+j]+i+(b-i-j-k>=3),4));
}
}
return c;
}
map<Data,int> M;int tot;
void Build(Data x)
{
if(x.check())return;
if(M.find(x)!=M.end())return;
ST[M[x]=++tot]=x;
for(int i=0;i<=4;++i)Build(Trans(x,i));
}
int jc[MAX],jv[MAX],inv[MAX];
int f[2][2100][MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int n,ans,s[MAX],tr[2100][5];
int main()
{
QwQ.init();Build(QwQ);
jc[0]=jv[0]=inv[0]=inv[1]=1;
for(int i=2;i<MAX;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<MAX;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
n=read();for(int i=1;i<=13;++i)s[read()]+=1,read();
for(int i=1;i<=tot;++i)for(int j=0;j<=4;++j)tr[i][j]=M[Trans(ST[i],j)];
f[0][1][0]=1;
for(int i=1,ss=0,nw=1,pw=0;i<=n;ss+=s[i],++i,nw^=1,pw^=1)
{
memset(f[nw],0,sizeof(f[nw]));
for(int j=1;j<=tot;++j)
for(int k=s[i];k<=4;++k)
{
if(!tr[j][k])continue;
int w=1ll*C(4-s[i],k-s[i])*jc[k-s[i]]%MOD;
for(int l=0;l<=n*4-k;++l)
if(f[pw][j][l])
add(f[nw][tr[j][k]][k+l],1ll*f[pw][j][l]*w%MOD*C(k+l-ss-s[i],k-s[i])%MOD);
}
}
for(int i=13,val=1;i<=n*4;val=1ll*val*inv[n*4-i]%MOD,++i)
{
int ret=0;
for(int j=1;j<=tot;++j)add(ret,f[n&1][j][i]);
add(ans,1ll*ret*val%MOD);
}
printf("%d\n",ans);
return 0;
}

[ZJOI2019]麻将(动态规划,自动机)的更多相关文章

  1. [ZJOI2019]麻将

    这是一道麻将自动机的模板题(雾 其实这是一道dp套dp借助自动机实现的麻将好题! 首先把期望转化一下,拆成sigema p(x>i) 现在要计算i张牌不胡的概率,也就等价于计算i张牌不胡的方案数 ...

  2. 【洛谷5279】[ZJOI2019] 麻将(“胡牌自动机”上DP)

    点此看题面 大致题意: 给你13张麻将牌,问你期望再摸多少张牌可以满足存在一个胡的子集. 似乎ZJOI2019Day1的最大收获是知道了什么是胡牌? 一个显然的性质 首先我们要知道一个显然的性质,即对 ...

  3. [ZJOI2019]麻将(DP+有限状态自动机)

    首先只需要考虑每种牌出现的张数即可,然后判断一副牌是否能胡,可以DP一下,令f[i][j][k][0/1]表示到了第i位,用j次i-1,i,i+1和k次i,i+1,i+2,是否出现对子然后最大的面子数 ...

  4. Luogu P5279 [ZJOI2019]麻将

    ZJOI2019神题,间接送我退役的神题233 考场上由于T2写挂去写爆搜的时候已经没多少时间了,所以就写挂了233 这里不多废话直接开始讲正解吧,我们把算法分成两部分 1.建一个"胡牌自动 ...

  5. 【题解】Luogu P5279 [ZJOI2019]麻将

    原题传送门 希望这题不会让你对麻将的热爱消失殆尽 我们珂以统计每种牌出现的次数,不需要统计是第几张牌 判一副牌能不能和,类似这道题 对于这题: 设\(f[i][j][k][0/1]\)表示前\(i\) ...

  6. 洛谷P5279 [ZJOI2019]麻将

    https://www.luogu.org/problemnew/show/P5279 以下为个人笔记,建议别看: 首先考虑如何判一个牌型是否含有胡的子集.先将牌型表示为一个数组num,其中num[i ...

  7. 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)

    洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\)​​​​​.我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...

  8. 洛谷P5279 [ZJOI2019]麻将(乱搞+概率期望)

    题面 传送门 题解 看着题解里一堆巨巨熟练地用着专业用语本萌新表示啥都看不懂啊--顺便\(orz\)余奶奶 我们先考虑给你一堆牌,如何判断能否胡牌 我们按花色大小排序,设\(dp_{0/1,i,j,k ...

  9. 题解 洛谷 P5279 【[ZJOI2019]麻将】

    这题非常的神啊...蒟蒻来写一篇题解. Solution 首先考虑如何判定一副牌是否是 "胡" 的. 不要想着统计个几个值 \(O(1)\) 算,可以考虑复杂度大一点的. 首先先把 ...

随机推荐

  1. C#:在匿名方法中捕获外部变量

    先来一段代码引入主题.如果你可以直接说出代码的输出结果,说明本文不适合你.(代码引自<深入理解C#>第三版) class Program { private delegate void T ...

  2. 2019Java查漏补缺(二)

    查看了公众号:java之间的整理的集和文章,文章地址 总结和搜索了一下网络知识,总结了一下: 1.String 的hashcode()方法 2.switch总结: 3.如何实现克隆 1.String ...

  3. java基础知识总结二

    1. synchronized和reentrantlock异同 相同点 都实现了多线程同步和内存可见性语义 都是可重入锁 不同点 实现机制不同 synchronized通过java对象头锁标记和Mon ...

  4. selenium-启动浏览器(二)

    selenium下启动浏览器,有两种方法 以 chromedrvier.exe 为例 1. chromedrvier.exe 与 python 启动程序 python.exe 在同一个目录下则可直接使 ...

  5. 【原】Java学习笔记022 - 字符串

    package cn.temptation; public class Sample01 { public static void main(String[] args) { // 字符串 // 定义 ...

  6. javascript Json和String互转

      var jsonText = "{\"id\":\"123\",\"name\":\"tom\",\&qu ...

  7. JAVA常用API的总结(2)

    这篇是常用API的结束了,写完的话可以继续往后复习了. 1.基本类型包装类的介绍与相关代码实现 对于数据包装类的特点就是可以将基本数据类型与字符串来回切换,接下来我会通过介绍Integer类的形式,来 ...

  8. AQS框架源码分析-AbstractQueuedSynchronizer

    前言:AQS框架在J.U.C中的地位不言而喻,可以说没有AQS就没有J.U.C包,可见其重要性,因此有必要对其原理进行详细深入的理解. 1.AQS是什么 在深入AQS之前,首先我们要搞清楚什么是AQS ...

  9. tqdm介绍及常用方法

    Tqdm 是一个快速,可扩展的Python进度条,可以在 Python 长循环中添加一个进度提示信息,用户只需要封装任意的迭代器 tqdm(iterator). 使用pip就可以安装. Tqdm 是一 ...

  10. Jetson TX2(2)ubutu1604--安装opencv3.4.0

    1安装OpenCV3.4.0+contrib 1 在终端中敲入以下两句sudo rm /var/cache/apt/archives/locksudo rm /var/lib/dpkg/lock su ...