洛谷 P1411 树
最近在做些树形DP练练手
原题链接
大意就是给你一棵树,你可以断开任意数量的边,使得剩下的联通块大小乘积最大。
样例
8
1 2
1 3
2 4
2 5
3 6
3 7
6 8
输出
18
我首先想的是设\(f[i]\)表示以\(i\)为根的子树可获得的最大收益,但是会发现这样无法转移。考虑再加一维,\(f[i][j]\)表示以\(i\)的子树中,\(i\)所在的联通块大小为\(j\)的最大价值。然后我就傻了,想了半天也没想起来怎么转移,最后只好看了一眼题解。其实转移好简单的,貌似是个树上背包?考虑在\(dfs\)的过程中进行\(DP\),每当访问完一个点\(i\)的子结点时,累加一下\(sz[i]\),就枚举\(j\),并且用当前子结点的\(DP\)值来更新\(f[i][j]\)。转移方程大概会长成下面这个样子:
$f[i][j]=max(f[i][j],f[i][k]*f[v][j-k])$
(理解的话,就是把之前的大小为$k$的联通块和在当前子树中大小为$j-k$的联通块拼起来)
同时,我们特别定义$f[i][0]$表示以$i$为根的子树可获得的价值,则他的转移方程比较特殊:
$f[i][0]=max(f[i][0],f[i][j]*j)$
如果到这里这道题就结束的话,代码会长成下面这样:
```cpp
#include
using namespace std;
define N 700
define ll long long
int n, eid, sz[N+5], head[N+5];
ll f[N+5][N+5];
struct Edge {
int next, to;
}e[2*N+5];
void addEdge(int u, int v) {
e[++eid].next = head[u];
e[eid].to = v;
head[u] = eid;
}
void dp(int u, int fa) {
sz[u] = 1, f[u][0] = f[u][1] = 1;
for(int i = head[u]; i; i = e[i].next) {
int v = e[i].to;
if(v == fa) continue;
dp(v, u);
sz[u] += sz[v];
for(int j = sz[u]; j >= 1; --j) { //枚举i所在的联通块大小
for(int k = min(j, sz[u]-sz[v]); k >= max(1, j-sz[v]); --k) { //枚举子树根结点所在联通块大小
f[u][j] = max(f[u][j], f[u][k]f[v][j-k]);
}
}
}
for(int i = 1; i <= sz[u]; ++i) f[u][0] = max(f[u][0], f[u][i]i);
}
int main() {
cin >> n;
for(int i = 1, x, y; i <= n-1; ++i) cin >> x >> y, addEdge(x, y), addEdge(y, x);
dp(1, 0);
cout << f[1][0] << endl;
return 0;
}
但是一交上去只有30$pts$,一看讨论区,发现还要用高精度!于是粘了个板子上去,然后就开心的$MLE$了 ̄▽ ̄。最后把$int$换成$short$就对了,无语。
粘一下$AC$代码
```cpp
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define N 700
int n, eid;
short sz[N+5], head[N+5];
struct Edge {
int next, to;
}e[2*N+5];
struct bign{ //高精类模板,网上找的
static const int maxn = 120;
short d[maxn+5];
short len;
void clean() { while(len > 1 && !d[len-1]) len--; }
bign() { memset(d, 0, sizeof(d)); len = 1; }
bign(int num) { *this = num; }
bign(char* num) { *this = num; }
bign operator = (const char* num) {
memset(d, 0, sizeof(d)); len = strlen(num);
for(int i = 0; i < len; i++) d[i] = num[len-1-i] - '0';
clean();
return *this;
}
bign operator = (int num){
char s[20]; sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator + (const bign& b) {
bign c = *this; int i;
for(i = 0; i < b.len; i++) {
c.d[i] += b.d[i];
if (c.d[i] > 9) c.d[i] %= 10, c.d[i+1]++;
}
while (c.d[i] > 9) c.d[i++] %= 10, c.d[i]++;
c.len = max(len, b.len);
if (c.d[i] && c.len <= i) c.len = i+1;
return c;
}
bign operator - (const bign& b) {
bign c = *this; int i;
for(i = 0; i < b.len; i++) {
c.d[i] -= b.d[i];
if (c.d[i] < 0) c.d[i] += 10, c.d[i+1]--;
}
while (c.d[i] < 0) c.d[i++] += 10, c.d[i]--;
c.clean();
return c;
}
bign operator * (const bign& b) const {
int i, j; bign c; c.len = len + b.len;
for(j = 0; j < b.len; j++)
for(i = 0; i < len; i++)
c.d[i+j] += d[i]*b.d[j];
for(i = 0; i < c.len-1; i++) c.d[i+1] += c.d[i]/10, c.d[i] %= 10;
c.clean();
return c;
}
bign operator / (const bign& b) {
int i, j;
bign c = *this, a = 0;
for(i = len - 1; i >= 0; i--) {
a = a*10 + d[i];
for (j = 0; j < 10; j++)
if (a < b*(j+1)) break;
c.d[i] = j;
a = a - b*j;
}
c.clean();
return c;
}
bign operator % (const bign& b) {
int i, j;
bign a = 0;
for(i = len - 1; i >= 0; i--) {
a = a*10+d[i];
for(j = 0; j < 10; j++) if (a < b*(j+1)) break;
a = a-b*j;
}
return a;
}
bign operator += (const bign& b) {
*this = *this+b;
return *this;
}
bool operator <(const bign& b) const {
if(len != b.len) return len < b.len;
for(int i = len-1; i >= 0; i--)
if(d[i] != b.d[i]) return d[i] < b.d[i];
return false;
}
bool operator >(const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b; }
bool operator == (const bign& b) const { return !(b < *this) && !(b > *this); }
string str() const {
char s[maxn] = {};
for(int i = 0; i < len; i++) s[len-1-i] = d[i]+'0';
return s;
}
}f[N+5][N+5];
istream& operator >> (istream& in, bign& x) {
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream& out, const bign& x) {
out << x.str();
return out;
}
void addEdge(int u, int v) {
e[++eid].next = head[u];
e[eid].to = v;
head[u] = eid;
}
void dp(int u, int fa) {
sz[u] = 1, f[u][0] = f[u][1] = 1;
for(int i = head[u]; i; i = e[i].next) {
int v = e[i].to;
if(v == fa) continue;
dp(v, u);
sz[u] += sz[v];
for(int j = sz[u]; j >= 1; --j) {
for(int k = min(j, sz[u]-sz[v]); k >= max(1, j-sz[v]); --k) {
f[u][j] = max(f[u][j], f[u][k]*f[v][j-k]);
}
}
}
for(int i = 1; i <= sz[u]; ++i) f[u][0] = max(f[u][0], f[u][i]*i);
}
int main() {
cin >> n;
for(int i = 1, x, y; i <= n-1; ++i) cin >> x >> y, addEdge(x, y), addEdge(y, x);
dp(1, 0);
cout << f[1][0] << endl;
return 0;
}
洛谷 P1411 树的更多相关文章
- 洛谷 P1411 树 (树形dp)
大意: 给定树, 求删除一些边, 使得连通块大小的乘积最大 设$dp_{i,j}$表示只考虑点$i$的子树, $i$所在连通块大小为$j$的最大值. 转移的时候不计算$i$所在连通块的贡献, 留到最后 ...
- 【算法学习】【洛谷】树链剖分 & P3384 【模板】树链剖分 P2146 软件包管理器
刚学的好玩算法,AC2题,非常开心. 其实很早就有教过,以前以为很难就没有学,现在发现其实很简单也很有用. 更重要的是我很好调试,两题都是几乎一遍过的. 介绍树链剖分前,先确保已经学会以下基本技巧: ...
- 洛谷P3384 树链剖分
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x ...
- 洛谷 P3384 树链剖分(模板题)
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...
- 洛谷P1268 树的重量
P1268 树的重量 85通过 141提交 题目提供者该用户不存在 标签树形结构 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 有这种情况吗!!!! 题意似乎有问题 题目描述 树可以用来表 ...
- 【树链剖分】洛谷P3379 树链剖分求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
- 【树链剖分】洛谷P3384树剖模板
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...
- 洛谷P3248 树 [HNOI2016] 主席树+倍增+分治
正解:主席树+倍增+分治 解题报告: 传送门! 首先看到这题会想到之前考过的这题 但是那题其实简单一些,,,因为那题只要用个分治+预处理就好,只是有点儿思维难度而已 这题就不一样,因为它说了是按照原树 ...
- 洛谷P3368 树状数组2 树状数组+差分
正解:树状数组+差分 解题报告: 戳我! 不得不说灵巧真滴是越来越弱了...连模板题都要放上来了QAQ 因为今天考试的T3正解要用到树状数组这才惊觉树状数组掌握得太太太太差了...之前一直靠线段树续着 ...
随机推荐
- ASP.MVC学习资源总结
自己动手写一个简单的MVC框架(第一版) 自己动手写一个简单的MVC框架(第二版) ASP.Net请求处理机制初步探索之旅 - Part 1 前奏 ASP.Net请求处理机制初步探索之旅 - Part ...
- 3星|《给产品经理讲技术》:APP开发技术介绍,没有技术背景的话恐怕只能看懂书中的比喻和结论
基本是APP开发涉及到的相关技术的入门级介绍.涉及到的知识点与技术细节比较多,不少技术相关的内容并没有像标题暗示的那样没有技术背景也可以看懂,而是涉及到许多专业的术语.原理.也有一些内容是用比喻的方法 ...
- 英语口语练习系列-C16-钱
词汇学习 beer [bɪə(r)] n. 啤酒 a glass of beer 一杯啤酒 five glasses of beer 五杯啤酒 beers (种类) Shall we have a b ...
- 【Python 20】BMR计算器4.0(异常处理)
1.案例描述 基础代谢率(BMR):我们安静状态下(通常为静卧状态)消耗的最低热量,人的其他活动都建立在这个基础上. 计算公式: BMR(男) = (13.7*体重kg)+(5.0*身高cm)-(6. ...
- jpa 联合查询方法
public interface TaskBaseline { String getNumber(); String getTitle(); String getName(); String getP ...
- An Overview of End-to-End Exactly-Once Processing in Apache Flink (with Apache Kafka, too!)
01 Mar 2018 Piotr Nowojski (@PiotrNowojski) & Mike Winters (@wints) This post is an adaptation o ...
- 2018/05/14 03:56:10 [error] 12959#0: *42285845507 client intended to send too large body: 1664288 bytes
Syntax: client_max_body_size size; Default: client_max_body_size 1m; Context: http, server, location ...
- UVALive - 3211 - Now or later(图论——2-SAT)
Problem UVALive - 3211 - Now or later Time Limit: 9000 mSec Problem Description Input Output Sampl ...
- day 12 装饰器
nonlocal关键字 # 作用:将 L 与 E(E中的名字需要提前定义) 的名字统一# 应用场景:如果想在被嵌套的函数中修改外部函数变量(名字)的值# 案例:def outer(): n ...
- koa2源码解读及实现一个简单的koa2框架
阅读目录 一:封装node http server. 创建koa类构造函数. 二:构造request.response.及 context 对象. 三:中间件机制的实现. 四:错误捕获和错误处理. k ...