【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论
Description
小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。 游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。
小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?
Input
输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。
接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。
Output
输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。
Sample Input
4 3
1 1
1 2
1 3
1 5
Sample Output
0 0 1 1
HINT
对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。
以上所有数均为正整数。
Sol
显然,根据sg定理,这道题每一堆石子是独立的一个游戏,我们只要对每一堆分别求出其sg值,然后异或起来即可,若异或值不为0则先手必胜,若异或值为0则后手必胜。而分石子会产生若干个子游戏,也是异或起来就行了。
在求sg值的时候,如果我们枚举n个石子分成i份,那么一定是分成\(n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor+1\)的和\(i-n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor\)的。所以我们可以直接判断这两种大小的堆数,如果是奇数那么就会产生贡献,如果是偶数则不会,然后异或起来即可。但是这样的时间复杂度是\(O(n^2)\),显然超时了,考虑优化。因为\(\lfloor\frac{n}{i}\rfloor\)只有\(\sqrt{n}\)种取值,我们就可以只取到这些取值,然后再把i+1也判断一下(奇偶性会影响到模意义下的结果),这样的时间复杂度是\(O(n\sqrt{n})\),可以通过本题,代码中给出递推求sg函数的写法。
Code
#include <bits/stdc++.h>
using namespace std;
int n,ans,T,f,x,sg[100005],vis[100005];
void getsg()
{
for(int g=f;g<=100000;g++)
{
for(int i=2,last;i<=g;i=last+1)
{
int k=g/i,k2=g%i,k1=i-k2;last=g/k;
vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
if(i+1<=min(g,last)) k2=g%(i+1),k1=i+1-k2,vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
}
for(int i=0;;i++) if(vis[i]!=g){sg[g]=i;break;}
}
}
int main()
{
for(scanf("%d%d",&T,&f),getsg();T--;)
{
scanf("%d",&n);ans=0;
for(int i=1;i<=n;i++) scanf("%d",&x),ans^=sg[x];
printf("%d%c",ans?1:0,T?' ':'\n');
}
}
【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论的更多相关文章
- luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论
感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...
- bzoj3576: [Hnoi2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- 【BZOJ3576】江南乐(博弈论)
[BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...
- bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理
3576: [Hnoi2014]江南乐 Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 1929 Solved: 686[Submit][Status ...
- 洛谷 P3235 [HNOI2014]江南乐 解题报告
P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...
- luogu P3235 [HNOI2014]江南乐
传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...
- [HNOI2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一 ...
- 【LG3235】 [HNOI2014]江南乐
题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...
- bzoj 3576: [Hnoi2014]江南乐
Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...
随机推荐
- spring-cloud配置ribbon负载均衡
spring-cloud配置ribbon负载均衡 ribbon提供的负载均衡就是开箱即用的,简单的不能再简单了 为了顺利演示此demo,你需要如下 需要提前配置eureka服务端,具体看 https: ...
- java - 只输出不含中文标点符号的中文
String a ="12dss显示,‘:()中文只"; StringBuffer b = new StringBuffer(); for(int i = 0;i<a.len ...
- python并发之multiprocessing
由于GIL(全局解释锁)的问题,python多线程并不能充分利用多核处理器.如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.multiprocessing可以给每个进程赋 ...
- MySQL: [Err] 1093 - You can't specify target table 'bk' for update in FROM clause
错误的意思说,不能先select出同一表中的某些值,再update这个表(在同一语句中). 例如下面这个sql: delete from tbl where id in ( select ...
- STA组件好资料
http://blog.h5min.cn/zj510/article/details/38824353 http://download.csdn.net/user/zj510/uploads/1 ht ...
- Spring Cloud Feign 1(声明式服务调用Feign 简介)
Spring Cloud Feign基于Netflix Feign 同时整合了Spring Cloud Ribbon和Spring Cloud Hytrix,除了提供两者的强大功能外,它还提供了一种声 ...
- 设备控制接口ioctl详解
[转]Linux设备控制接口 序言设备驱动程序的一个基本功能就是管理和控制设备,同时为用户应用程序提供管理和控制设备的接口.我们前面的“Hello World”驱动程序已经可以提供读写功能了,在这里我 ...
- 在linux中read、write函数
read函数从打开的设备或文件中读取数据. #include<</span>unistd.h> ssize_t read(int fd, void *buf, size_t ...
- obj.get_字段名称_display
在页面上我们只要这么写就可以直接把字典的值显示出来了 {{ obj.get_level_display }}({{ obj.level }}) obj.get_字段名称_display . model ...
- PHP配置数据库XML文件
<?php $doc=new DOMDocument('1.0','utf-8'); //new一个dom对象 $doc->load("config.xml"); 加载 ...