Description

小A是一个名副其实的狂热的回合制游戏玩家。在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏。 游戏的规则是这样的,首先给定一个数F,然后游戏系统会产生T组游戏。每一组游戏包含N堆石子,小A和他的对手轮流操作。每次操作时,操作者先选定一个不小于2的正整数M (M是操作者自行选定的,而且每次操作时可不一样),然后将任意一堆数量不小于F的石子分成M堆,并且满足这M堆石子中石子数最多的一堆至多比石子数最少的一堆多1(即分的尽量平均,事实上按照这样的分石子万法,选定M和一堆石子后,它分出来的状态是固定的)。当一个玩家不能操作的时候,也就是当每一堆石子的数量都严格小于F时,他就输掉。(补充:先手从N堆石子中选择一堆数量不小于F的石子分成M堆后,此时共有N+M-1)堆石子,接下来小A从这N+M-1堆石子中选择一堆数量不小于F的石子,依此类推。

小A从小就是个有风度的男生,他邀请他的对手作为先手。小A现在想要知道,面对给定的一组游戏,而且他的对手也和他一样聪明绝顶的话,究竟谁能够获得胜利?

Input

​ 输入第一行包含两个正整数T和F,分别表示游戏组数与给定的数。

接下来T行,每行第一个数N表示该组游戏初始状态下有多少堆石子。之后N个正整数,表示这N堆石子分别有多少个。

Output

​ 输出一行,包含T个用空格隔开的0或1的数,其中0代表此时小A(后手)会胜利,而1代表小A的对手(先手)会胜利。

Sample Input

4 3

1 1

1 2

1 3

1 5

Sample Output

0 0 1 1

HINT

对于100%的数据,T<100,N<100,F<100000,每堆石子数量<100000。

以上所有数均为正整数。

Sol

显然,根据sg定理,这道题每一堆石子是独立的一个游戏,我们只要对每一堆分别求出其sg值,然后异或起来即可,若异或值不为0则先手必胜,若异或值为0则后手必胜。而分石子会产生若干个子游戏,也是异或起来就行了。

在求sg值的时候,如果我们枚举n个石子分成i份,那么一定是分成\(n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor+1\)的和\(i-n\%i\)堆大小为\(\lfloor\frac{n}{i}\rfloor\)的。所以我们可以直接判断这两种大小的堆数,如果是奇数那么就会产生贡献,如果是偶数则不会,然后异或起来即可。但是这样的时间复杂度是\(O(n^2)\),显然超时了,考虑优化。因为\(\lfloor\frac{n}{i}\rfloor\)只有\(\sqrt{n}\)种取值,我们就可以只取到这些取值,然后再把i+1也判断一下(奇偶性会影响到模意义下的结果),这样的时间复杂度是\(O(n\sqrt{n})\),可以通过本题,代码中给出递推求sg函数的写法。

Code

#include <bits/stdc++.h>
using namespace std;
int n,ans,T,f,x,sg[100005],vis[100005];
void getsg()
{
for(int g=f;g<=100000;g++)
{
for(int i=2,last;i<=g;i=last+1)
{
int k=g/i,k2=g%i,k1=i-k2;last=g/k;
vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
if(i+1<=min(g,last)) k2=g%(i+1),k1=i+1-k2,vis[sg[(k1&1)*k]^sg[(k2&1)*(k+1)]]=g;
}
for(int i=0;;i++) if(vis[i]!=g){sg[g]=i;break;}
}
}
int main()
{
for(scanf("%d%d",&T,&f),getsg();T--;)
{
scanf("%d",&n);ans=0;
for(int i=1;i<=n;i++) scanf("%d",&x),ans^=sg[x];
printf("%d%c",ans?1:0,T?' ':'\n');
}
}

【bzoj3576】[Hnoi2014]江南乐 数论分块+博弈论的更多相关文章

  1. luoguP3235 [HNOI2014]江南乐 数论分块 + 博弈论

    感觉其实很水? 题目就是一个Multi SG游戏,只需要预处理出所有的\(sg\)值即可\(O(Tn)\)计算 对于计算\(sg[n]\)而言,显然我们可以枚举划分了\(x\)堆来查看后继状态 那么, ...

  2. bzoj3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  3. 【BZOJ3576】江南乐(博弈论)

    [BZOJ3576]江南乐(博弈论) 题面 BZOJ 洛谷 题解 无论一堆石头怎么拆分,都并不能改变它是一个\(Multi-SG\)的事实. 既然每一组的\(F\)都是固定的,那么我们预处理所有的可能 ...

  4. bzoj 3576[Hnoi2014]江南乐 sg函数+分块预处理

    3576: [Hnoi2014]江南乐 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 1929  Solved: 686[Submit][Status ...

  5. 洛谷 P3235 [HNOI2014]江南乐 解题报告

    P3235 [HNOI2014]江南乐 Description 两人进行 T 轮游戏,给定参数 F ,每轮给出 N 堆石子,先手和后手轮流选择石子数大于等于 F 的一堆,将其分成任意(大于1)堆,使得 ...

  6. luogu P3235 [HNOI2014]江南乐

    传送门 这题又是我什么时候做的(挠头) 首先是个和SG函数有关的博弈论,SG=0则先手必败.显然一堆石子就是一个游戏,而若干堆石子的SG值就是每堆SG的异或和,所以算出每堆石子SG就能知道答案 然后怎 ...

  7. [HNOI2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏.    游戏的规则是这样的,首先给定一 ...

  8. 【LG3235】 [HNOI2014]江南乐

    题目描述 给出\(n\)堆石子, 每次可以选择将大于某个数\(f\)一堆平均分成多个堆, 最后不能操作的失败. 题解 10pts 直接爆搜即可. 70pts 像我们对这类题目的常规操作那样,将一整个局 ...

  9. bzoj 3576: [Hnoi2014]江南乐

    Description 小A是一个名副其实的狂热的回合制游戏玩家.在获得了许多回合制游戏的世界级奖项之后,小A有一天突然想起了他小时候在江南玩过的一个回合制游戏. 游戏的规则是这样的,首先给定一个数F ...

随机推荐

  1. Oracle T4-2 使用ILOM CLI升级Firmware

    简单记录一下使用命令行升级Firmware的过程. 升级前版本 -> version SP firmware 3.2.1.8.a SP firmware build number: 88456 ...

  2. Oracle & SQL Server 数据传输

    在开发中用到的Oracle与SQL Server间数据传输的不同方法的整理,比较.包括原理的简介,配置和实现方法,优缺点的比较,使用平台和DB,适合的应用范围和效能的比较. 整理的方法有如下六种: 1 ...

  3. js点击按钮获取验证码倒计时

    //发送验证码倒计时 var clock = ''; var nums = 60; var btn; $("#btnGetVerCode").click(function () { ...

  4. 【HDU1573】X问题

    [题目描述] 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = ...

  5. laravel tinker测试模型添加属性

    php artisan tinker 新建一个模型对象 $post=new \App\Posts(); 给对象的属性挨个赋值 $post->title="this is title&q ...

  6. css常见问题解决方法

    设置方法: div内的img和span都需要设置vertical-align:middle; 解决inline-block的空格: http://www.w3cplus.com/css/fightin ...

  7. Python学习笔记_一个Tkinter示例,使用FileDialog

    为了使用Python进行数据分析,编写一个图形界面,选择一个Excel文件(或CSV),然后进行后续处理. 一.本示例涵盖如下知识点: 1.FileDialog的使用 2.退出程序 3.消息提示框的示 ...

  8. Python代码注释

    1.单行注释使用# # Code 2.多行注释,成对使用'''或""",三个单撇号或三个双引号 “”” Code “”” 3.多行快捷注释 1).增加注释 选中待注释的多 ...

  9. ubuntu16.04 ARM平台移植xmlrpc-c1.39.12

    1. xmlrpc-c依赖与libcurl 参考另外一篇随笔:https://www.cnblogs.com/flyinggod/p/10148228.html 2. 下载源代码 http://xml ...

  10. WEB前端--JavaScript

    JavaScript JavaScript基础 一.JavaScript简介 JavaScript是一种嵌入到HTML文件中的描述性语言,由浏览器的解释器将其动态地处理成可执行的代码,能独立地完成与客 ...