说明:这是去年写了一半的东西,一直存在草稿箱里,今天整理东西的时候才发现,还是把它发表出来吧。。


以下所有题目来自Lrj的《训练指南》

LA 2191

单点修改,区间和  Fenwick直接搞

UVa 12299

给出n个数,支持循环移动某些数(<30个),然后问区间最小值

因为移动小于30个数,所以直接单点修改就行,线段树。

LA 4108

类似线段树,每次插入一个建筑时想线段树一样二分区间,当遇到一个完整的区间时,修改或返回,否则继续二分区间。Nlogn.

UVa 11525

有题解说可以逆向考虑用线段树,我没明白怎么回事。

   说一下我的做法:

   考虑问题(k,n)表示1~k的全排列中第n个。显然1~k的全排列可以分为k种,每种有(k-1)!种情况,那么如果确定了第n个排列属于哪一种,问题就转化为了(k-1,m);

    再考虑题目的输入。N的输入形式正好是按以上思想给出的,那么我们是需要把这个式子转化为标准形式即可。

   判断每个Si,若Si>(k-i+1),就要”进位”。所以从后向前扫描,可以在O(n)时间内解决。

LA 4730

并查集+线段树。用并查集维护每个州,同时维护每个州的上端点(up)和下端点(down)。

用线段树维护[a,b]内有多少个城市。方法是连接A和B时,[A.down,A.up]-=A.count; [B.down,B.up]-=B.count;  [new.down,new.up]+=new.count;

二维线段树

  先存一下(以下代码仅供参考 准确性无法保证233)

 #include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#define RS(x) (x*2+1)
#define LS(x) (x*2)
#define bigger(a,b) ((a)>(b)?(a):(b))
#define minner(a,b) ((a)<(b)?(a):(b))
#define MAXN (2000+10)
#define root (1)
#define INF (9999999)
using namespace std;
struct Segment_Tree_2D{
struct treeY{
int max,min;
int L,R;
int mid;
};
typedef struct treeY treeY;
struct treeX{
treeY T[MAXN];
int L,R;
int mid;
};
typedef struct treeX treeX;
int x1,x2,y1,y2,val,max_ans,min_ans,x0,y0;
treeX t[MAXN];
void queryY(int f,int r,int fa,int p){//ok
if (r>t[fa].T[p].R) r=t[fa].T[p].R;
if (f<t[fa].T[p].L) f=t[fa].T[p].L;
if (f==t[fa].T[p].L&&r==t[fa].T[p].R){
max_ans=bigger(max_ans,t[fa].T[p].max);
min_ans=minner(min_ans,t[fa].T[p].min);
}else{
int mid=t[fa].T[p].mid;
if (r>mid) queryY(mid+,r,fa,RS(p));
if (f<=mid) queryY(f,mid,fa,LS(p));
}
}
void queryX(int f,int r,int p){//ok
if (r>t[p].R) r=t[p].R;
if (f<t[p].L) f=t[p].L;
if (f==t[p].L&&r==t[p].R){
queryY(y1,y2,p,root);
}else{
int mid=t[p].mid;
if (r>mid) queryX(mid+,r,RS(p));
if (f<=mid) queryX(f,mid,LS(p));
}
}
void modifyY(int fa,int p){//ok
if (y0==t[fa].T[p].L&&y0==t[fa].T[p].R){
t[fa].T[p].min=val;
t[fa].T[p].max=val;
}else{
int mid=t[fa].T[p].mid;
if (y0>mid) modifyY(fa,RS(p));
if (y0<=mid) modifyY(fa,LS(p));
}
t[fa].T[p].max=bigger(t[fa].T[LS(p)].max,t[fa].T[RS(p)].max);
t[fa].T[p].min=minner(t[fa].T[LS(p)].min,t[fa].T[RS(p)].min);
}
void maintainY(int fa,int p){//ok
if (y0==t[fa].T[p].L&&y0==t[fa].T[p].R){
t[fa].T[p].min=minner(t[LS(fa)].T[p].min,t[RS(fa)].T[p].min);
t[fa].T[p].max=bigger(t[LS(fa)].T[p].max,t[RS(fa)].T[p].max);
}else{
int mid=t[fa].T[p].mid;
if (y0>mid) maintainY(fa,RS(p));
if (y0<=mid) maintainY(fa,LS(p));
}
t[fa].T[p].max=bigger(t[fa].T[LS(p)].max,t[fa].T[RS(p)].max);
t[fa].T[p].min=minner(t[fa].T[LS(p)].min,t[fa].T[RS(p)].min);
}
void modifyX(int p){
if (x0==t[p].L&&x0==t[p].R){
modifyY(p,root);
}else{
int mid=t[p].mid;
if (x0>mid) modifyX(RS(p));
if (x0<=mid) modifyX(LS(p));
maintainY(p,root);
}
} void query(){max_ans=-INF;min_ans=INF;queryX(x1,x2,root);}
void modify(){modifyX(root);}
};
typedef struct Segment_Tree_2D ST2;
ST2 t;
int main()
{
int i,j,n,m,temp,q;
char cmd[];
scanf("%d%d",&n,&m);
for (i=;i<=n;i++){
for (j=;j<=m;j++){
scanf("%d",&temp);
t.x0=i; t.y0=j;
t.modify();
}
}
scanf("%d",&q);
for (i=;i<q;i++){
scanf("%s",cmd);
if (cmd[]=='q'){
scanf("%d%d%d%d",&t.x1,&t.y1,&t.x2,&t.y2);
t.query();
printf("%d %d\n",t.max_ans,t.min_ans);
}else{
scanf("%d%d",&t.x0,&t.y0);
t.modify();
}
}
return ;
}

数据结构习题 线段树&树状数组的更多相关文章

  1. CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)

    The best programmers of Embezzland compete to develop a part of the project called "e-Governmen ...

  2. NOIp 数据结构专题总结 (2):分块、树状数组、线段树

    系列索引: NOIp 数据结构专题总结 (1) NOIp 数据结构专题总结 (2) 分块 阅:<「分块」数列分块入门 1-9 by hzwer> 树状数组 Binary Indexed T ...

  3. 数据结构--树状数组&&线段树--基本操作

    随笔目的:方便以后对树状数组(BIT)以及基本线段树的回顾 例题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1166 例题:hdu 1166 敌兵布阵 T ...

  4. HDU 1556 线段树或树状数组,插段求点

    1.HDU 1556  Color the ball   区间更新,单点查询 2.题意:n个气球,每次给(a,b)区间的气球涂一次色,问最后每个气球各涂了几次. (1)树状数组 总结:树状数组是一个查 ...

  5. tyvj P1716 - 上帝造题的七分钟 二维树状数组区间查询及修改 二维线段树

    P1716 - 上帝造题的七分钟 From Riatre    Normal (OI)总时限:50s    内存限制:128MB    代码长度限制:64KB 背景 Background 裸体就意味着 ...

  6. hdu 4836 The Query on the Tree(线段树or树状数组)

    The Query on the Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  7. 【BZOJ3295】动态逆序对(线段树,树状数组)

    [BZOJ3295]动态逆序对(线段树,树状数组) 题面 Description 对于序列A,它的逆序对数定义为满足iAj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的 ...

  8. ZJOI 2017 树状数组(线段树套线段树)

    题意 http://uoj.ac/problem/291 思路 不难发现,九条カレン醬所写的树状数组,在查询区间 \([1,r]\) 的时候,其实在查询后缀 \([r,n]\) :在查询 \([l,r ...

  9. 「CodePlus 2017 11 月赛」Yazid 的新生舞会(树状数组/线段树)

    学习了新姿势..(一直看不懂大爷的代码卡了好久T T 首先数字范围那么小可以考虑枚举众数来计算答案,设当前枚举到$x$,$s_i$为前$i$个数中$x$的出现次数,则满足$2*s_r-r > 2 ...

随机推荐

  1. Youth Is Not a Time of Life

    Youth is not a time of life; it is a state of mind.青春不是年华,而是心境: It is not a matter of rosy cheeks, r ...

  2. ADB简易安装方法

    ADB安装方法: 1. 下载ADB程序 下载地址: 链接:https://pan.baidu.com/s/1CfQL51pBz-2Wk_cYfJYXUw  提取码:bjp8 2. 配置环境变量 pat ...

  3. Rikka with Subset

    Rikka with Subset Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. 小程序html 显示 图片处理

    let arr = [] for (const v of r.data.data ){ // v.content = v.content.replace(/<img/g ,' <image ...

  5. 取消select默认样式

    /*清除select默认样式*/select { border: solid 1px #CACDD0; appearance:none; -moz-appearance:none; -webkit-a ...

  6. 流畅的python python 序列

    内置序列 容器类型 list .tuple和collections.deque这些序列能放入不同的类型的数据 扁平序列 str.byets.bytearray.memoryview(内存视图)和arr ...

  7. rpm命令相关命令运用实例

    1) 挂载光盘文件到/media目录 2) 进去/media目录下的Packages目录 3) 查看系统已安装的所有rpm包 4) 查看系统是否安装dhcp软件包 5,安装dhcp软件包 6) 查看d ...

  8. HDU 3591 多重背包

    给出N种钱币和M 给出N种钱币的面值和个数 NPC拿着这N些钱币去买价值M的物品,能够多付.然后被找零,找零的钱也为这些面值.但没有数量限制 问最少经手的钱币数量 对于NPC做一个付款多重背包 然后对 ...

  9. Map.Entry<K,V>分析

    一.好处 你是否已经对每次从Map中取得关键字然后再取得相应的值感觉厌倦? Set keys = map.keySet( ); if(keys != null) { Iterator iterator ...

  10. pgAgent设定定时备份

    PostgreSQL定时自动备份 简介 PostgreSQL数据库中未提供数据库的定时备份功能,所以需要结合备份和定时job功能来共同实现. 这里我选取了2种定时job方式,crontab是Linux ...