http://codeforces.com/problemset/problem/992/B

 题意:

给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lcm(a,b)=y ,如果a,b交换位置就是不同的数对

思路:

根据lcm(最小公倍数) 的定义 y=a*b/x; 也就是说 x∗y=a∗b ;

那么 ,我们发现a,b一定为y的因数,所以我们枚举y的每个因子就可以,我们只要用log(y)的复杂度暴力算每一个因数就可以 ,

然后对于每个因子当做a, b=x*y/a; 然后判断a,b是否在区间内,gcd(a,b)是否为x,(注意要判断是否等于b)

 

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <sstream>
const int INF=0x3f3f3f3f;
typedef long long LL;
const int mod=1e9+;
//const double PI=acos(-1);
#define Bug cout<<"---------------------"<<endl
const int maxm=1e6+;
const int maxn=1e5+;
using namespace std; LL gcd(LL a,LL b)
{
return b? gcd(b,a%b):a;
} int main()
{
int l,r,x,y;
scanf("%d %d %d %d",&l,&r,&x,&y);
int ans=;
for(LL i=;i*i<=y;i++)//第一个因子
{
if(y%i==)
{
LL j=x*(y/i);
if(i>=l&&i<=r&&j>=l&&j<=r&&gcd(i,j)==x)
ans++;
LL ii=y/i;//对应的另一个因子
if(i!=ii)
{
LL jj=x*(y/ii);
if(ii>=l&&ii<=r&&jj>=l&&jj<=r&&gcd(ii,jj)==x)
ans++;
}
}
}
printf("%d\n",ans);
return ;
}

Hankson的趣味题

Description

  Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson。现 在,刚刚放学回家的Hankson 正在思考一个有趣的问题。 今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数。现 在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整 数x 满足: 1. x 和a0 的最大公约数是a1; 2. x 和b0 的最小公倍数是b1。 Hankson 的“逆问题”就是求出满足条件的正整数x。但稍加思索之后,他发现这样的 x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的x 的个数。请你帮 助他编程求解这个问题。

Input

  输入第一行为一个正整数n,表示有n 组输入数据。
接下来的n 行每 行一组输入数据,为四个正整数a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入 数据保证a0 能被a1 整除,b1 能被b0 整除。

Output

  输出共n 行。每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出0; 若存在这样的 x,请输出满足条件的x 的个数;

Sample Input

2
41 1 96 288
95 1 37 1776

Sample Output

6
2

HINT

样例说明

第一组输入数据,x 可以是9、18、36、72、144、288,共有6 个。

第二组输入数据,x 可以是48、1776,共有2 个。

数据规模和约定

对于 50%的数据,保证有1≤a0,a1,b0,b1≤10000 且n≤100。

对于 100%的数据,保证有1≤a0,a1,b0,b1≤2,000,000,000 且n≤2000。

题解:

https://www.cnblogs.com/five20/p/8434085.html

代码如下(无优化):

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <string>
#include <math.h>
#include <algorithm>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <sstream>
const int INF=0x3f3f3f3f;
typedef long long LL;
const int mod=1e9+;
//const double PI=acos(-1);
#define Bug cout<<"---------------------"<<endl
const int maxn=1e5+;
using namespace std; LL gcd(LL a,LL b)
{
if(b==) return a;
else return gcd(b,a%b);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
LL a,b,c,d;
scanf("%lld %lld %lld %lld",&a,&b,&c,&d);
if(a%b||d%c||d%b)
printf("0\n");
else
{
int num=;
for(int x=;x*x<=d;x++)
{
if(d%x==)
{
if(x%b==&&gcd(x/b,a/b)==&&gcd(d/x,d/c)==) num++;
int y=d/x;
if(x==y) continue;
if(y%b==&&gcd(y/b,a/b)==&&gcd(d/y,d/c)==) num++;
}
}
printf("%d\n",num);
}
}
return ;
}

CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)的更多相关文章

  1. Nastya Studies Informatics CodeForces - 992B (大整数)

    B. Nastya Studies Informatics time limit per test 1 second memory limit per test 256 megabytes input ...

  2. Nastya Studies Informatics

    Nastya Studies Informatics   time limit per test 1 second   memory limit per test 256 megabytes   in ...

  3. CF992B Nastya Studies Informatics 数学(因子) 暴力求解 第三道

    Nastya Studies Informatics time limit per test 1 second memory limit per test 256 megabytes input st ...

  4. 算法训练 Hankson的趣味题

    算法训练 Hankson的趣味题   时间限制:1.0s   内存限制:64.0MB        问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...

  5. 1172 Hankson 的趣味题[数论]

    1172 Hankson 的趣味题 2009年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Descrip ...

  6. 1172 Hankson 的趣味题

    1172 Hankson 的趣味题 2009年NOIP全国联赛提高组  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Descrip ...

  7. Codevs 1172 Hankson 的趣味题 2009年NOIP全国联赛提高组

    1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description Hanks 博 ...

  8. 一本通1626【例 2】Hankson 的趣味题

    1626:[例 2]Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考 ...

  9. 洛谷 P1072 Hankson 的趣味题 解题报告

    P1072 \(Hankson\)的趣味题 题目大意:已知有\(n\)组\(a0,a1,b0,b1\),求满足\((x,a0)=a1\),\([x,b0]=b1\)的\(x\)的个数. 数据范围:\( ...

随机推荐

  1. JSTL与EL表达式(为空判断)

    JSTL与EL表达式(为空判断) 一.循环遍历集合  1.在jsp中引入标准函数声明  <%@ taglib uri="http://java.sun.com/jsp/jstl/cor ...

  2. 使用openssl做CA服务器,并且生成证书。

    [root@22 conf.d]# openssl genrsa -out /etc/pki/CA/private/cakey.pem 4096  #ca私钥 [root@22 conf.d]# op ...

  3. LIS是什么?【质量控制】

    继续[LIS是什么?]中提到的[质量控制]. Ⅱ.质量控制要求非常专业,现在只说一说个人理解,以下仅为LIS检验中部分理解,实际上实验室质量控制还包含的报告时效,实验室温度.湿度等等一系列内容,是一个 ...

  4. 寒假day24

    数据挖掘得继续深入,人物画像需要进行更多层次的分析

  5. XML--XML概览

    参考 https://www.cnblogs.com/fangjian0423/p/xml-namespace.html http://www.w3school.com.cn/x.asp xmlns ...

  6. 利用mysecureshell搭建sftp服务

    1.下载对应的mysecureshell-1.33-1.x86_64.rpm包 2.安装mysecureshell-1.33-1.x86_64.rpm 3.添加ftp用户 useradd ftp 4. ...

  7. [tensorflow] 线性回归模型实现

    在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...

  8. 使用Map,统计字符串中每个字符出现的次数

    package seday13; import java.util.HashMap; import java.util.Map; /** * @author xingsir * 统计字符串中每个字符出 ...

  9. vivado下创建基本时序周期约束

    创建基本时钟周期约束.(验证我们的设计能否在期望的频率上运行) (学习记录,晚一点会做实验传上来的.) 时钟基本概念:https://blog.csdn.net/wordwarwordwar/arti ...

  10. 吴裕雄--天生自然 JAVASCRIPT开发学习:计时事件

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...