题目

我的天,这题是真的卡精度......

主要是精度很不好处理,经本蒟蒻测验,精度在\(10^{-6}\)会比较好优雅


【分析】

对于这种某个变量特别小\((\leq 31)\)的题目,本蒟蒻第一反应就是状压

对于某个抛物线,一定要打到起码一个小猪(不然不如不要这一条抛物线)

有人觉得最少会打掉两只小猪的,可以仔细想一下,万一\(a \geq 0\)呢......

好的,我们继续

那么,我们可以这么考虑,枚举每一只小猪的坐标

首先,有一条抛物线是只过它的

其次,再枚举其他小猪,算出抛物线方程(见下方),若\(a<0\)就记录这条抛物线,否则可以直接跳出

记录完这条抛物线后,我们枚举其他的小猪,查看是否在线上

这里要注意精度问题,如果计算出来的\(y\)与题目所给的\(y\)偏差值不超过\(10^{-6}\),就直接视为同一个值(毕竟计算是有一定的精度问题)

那么对于接下来,我已经预处理过了所有的小鸟的轨迹(抛物线),只需要在状压方程中直接算就可以了

在打\(0\)只小猪的时候,需要用\(0\)只小鸟,于是有:

\(dp[0]=0\)

假设当前状态为\(i\),抛物线为第\(j\)条,抛物线打掉的小猪状态为\(para[j]\),那么有:

\(dp[i|para[j]]=min(dp[i|para[j]],dp[i]+1)\)


接下来我们说一下怎么求\(a\)和\(b\):

假设枚举到两个小猪,坐标分别为\((x_1,y_1)\)和\((x_2,y_2)\),那么就对应地会有:

\(\begin{cases} y_1=ax_1^2+bx_1\\ \\y_2=ax_2^2+bx_2\end{cases}\)

这里有一个很明显的矩阵关系:

\(\left[\begin{matrix}\ y_1\ \\ \\y_2\end{matrix}\right]=\left[\begin{matrix}\ x_1^2&x_1\ \\ \\x_2^2&x_2\end{matrix}\right]\times\left[\begin{matrix}\ a\ \\ \\b\end{matrix}\right]\)

于是有:

\(\left[\begin{matrix}\ a\ \\ \\b\end{matrix}\right]=\left[\begin{matrix}\ x_1^2&x_1\ \\ \\x_2^2&x_2\end{matrix}\right]^{-1}\times\left[\begin{matrix}\ y_1\ \\ \\y_2\end{matrix}\right]\)

又因为:

\(\left|\begin{matrix}\ x_1^2&x_1\\ \\x_2^2&x_2\end{matrix}\right|=x_1^2x_2-x_1x_2^2=(x_1-x_2)x_1x_2\)

所以有:

\(\left[\begin{matrix}\ x_1^2&x_1\ \\ \\ x_2^2&x_2\end{matrix}\right]^{-1}=\frac{1}{(x_1-x_2)x_1x_2}\left[\begin{matrix}\ x_2&-x_1\ \\ \\-x_2^2&x_1^2\end{matrix}\right]\)

(逆矩阵的求法)

所以有:

\(\left[\begin{matrix}\ a\ \\ \\b\end{matrix}\right]={1\over(x_1-x_2)x_1x_2}\left[\begin{matrix}\ x_2&-x_1\ \\ \\-x_2^2&x_1^2\end{matrix}\right]\times\left[\begin{matrix}\ y_1\ \\ \\y_2\end{matrix}\right]\)

即:

\(\begin{cases}a={1\over(x_1-x_2)x_1x_2}\times(x_2y_1-x_1y_2)\\ \\b={1\over(x_1-x_2)x_1x_2}\times(x_1^2y_2-x_2^2y_1)\end{cases}\)


还有一件事

我们对于抛物线,在后面枚举状态的时候是不需要知道除了能打的小猪以外的所有信息

所以直接维护这个信息就可以了,其他都没有必要维护

这个众位大犇可以直接一下本蒟蒻的代码


【代码】

那本蒟蒻就放代码了:

#include<cstdio>
#include<cstring>
using namespace std;
#define min(a,b) ((a<b)?a:b)
inline void built(double &a,double &b,double x1,double y1,double x2,double y2){
a=(x2*y1-x1*y2)/(x1*x2*(x1-x2));
b=(x1*x1*y2-x2*x2*y1)/(x1*x2*(x1-x2));
}//计算a,b
inline bool inc(double a,double b,double x,double y){
double abs=a*x*x+b*x-y;
if(abs<0) abs=-abs;
return abs<=0.000001;
}//判定某个小猪是否在抛物线上
inline int read(){
int ans=0;char c=getchar();bool neg=0;
while((c<'0')|(c>'9')) { neg^=!(c^'-'); c=getchar(); }
while((c>='0')&(c<='9')) { ans=(ans<<3)+(ans<<1)+c-'0'; c=getchar(); }
return neg?-ans:ans;
}//无聊的读入优化
int n,para[200],dp[1<<18],countpara;
inline void pre(){
memset(dp,0x3f,sizeof(dp));
countpara=0;
double x[18]={0},y[18]={0};
n=read();read();
for(int i=0;i<n;i++) scanf("%lf %lf",&x[i],&y[i]);
//dp定义为无限大,抛物线的条数清空,读入
for(int i=0;i<n;i++){
para[countpara++]=(1<<i);
//只打一只小猪的
for(int j=i+1,vis=0;j<n;j++)//定义vis表示打到过的小猪,避免重复枚举
if((vis>>j)&1) continue;
else{
double a,b;
built(a,b,x[i],y[i],x[j],y[j]);
if(a>=0) continue;
para[countpara]=(1<<i);
for(int k=j;k<n;k++)//枚举小猪,查看是否在线上
if(inc(a,b,x[k],y[k])){
vis|=(1<<k);
para[countpara]|=(1<<k);
}
countpara++;
}
}
}
inline int ans(){//状压
dp[0]=0;
for(int i=0;i<(1<<n);i++)
for(int j=0;j<countpara;j++)
dp[i|para[j]]=min(dp[i|para[j]],dp[i]+1);
return dp[(1<<n)-1];
}
int main(){
int t=read();
while(t--){
pre();//先皮一下
printf("%d\n",ans());
}
return 0;
}

最后安利一下 本蒟蒻的博客

题解 P2831 【愤怒的小鸟】的更多相关文章

  1. 【题解】P2831 愤怒的小鸟 - 状压dp

    P2831愤怒的小鸟 题目描述 \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\) 可以 ...

  2. 洛谷P2831 愤怒的小鸟

    洛谷P2831 愤怒的小鸟 原题链接 题解 首先简单数学公式送上. \(ax_1^2+bx_1=y_1\) \(ax_2^2+bx_2=y_2\) \(ax_1^2x_2+bx_1x_2=y_1x_2 ...

  3. P2831 愤怒的小鸟

    P2831 愤怒的小鸟 从 \((0, 0)\) 发射一只鸟, 轨迹满足抛物线, 问最少几只鸟可以打完 \(n <= 18\) 只猪 错误日志: 处理抛物线数组没有初始化 Solution 数据 ...

  4. P2831 愤怒的小鸟(状压dp)

    P2831 愤怒的小鸟 我们先预处理出每个猪两两之间(设为$u,v$)和原点三点确定的抛物线(当两只猪横坐标相等时显然无解) 处理出$u,v$确定的抛物线一共可以经过多少点,记为$lines[u][v ...

  5. 洛谷 P2831 愤怒的小鸟

    P2831 愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0)(0,0) 处,每次 Kiana 可以用它向第一象 ...

  6. P2831 愤怒的小鸟——状压

    P2831 愤怒的小鸟 抛物线过原点,只要再找两个就能确定抛物线: 处理出两两之间的抛物线能过哪些点,状态压缩: 但是直接枚举每一条抛物线常数太大会T,所以我们需要预处理一个low_bit表示当前状态 ...

  7. Luogu P2831 愤怒的小鸟(状压+记忆化搜索)

    P2831 愤怒的小鸟 题意 题目描述 Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于\((0,0)\)处,每次Kiana可以用它向第一象限发射 ...

  8. [Luogu P2831] 愤怒的小鸟 (状压DP)

    题面: 传送门:https://www.luogu.org/problemnew/show/P2831 Solution 首先,我们可以先康一康题目的数据范围:n<=18,应该是状压或者是搜索. ...

  9. 【luogu P2831 愤怒的小鸟】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2831 写点做题总结:dp,搜索,重在设计状态,状态设的好,转移起来也方便. 对于一条抛物线,三点确定.(0, ...

随机推荐

  1. 【STM32H7教程】第51章 STM32H7的LTDC应用之LCD汉字显示和2D图形显示

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第51章       STM32H7的LTDC应用之LCD汉字 ...

  2. 工作问题整理-- sqlserver 新增参数限制,maven pom邮件发送

    1.SqlServer连续新增参数限制 com.microsoft.sqlserver.jdbc.SQLServerException: 传入的请求具有过多的参数.该服务器支持最多 2100 个参数. ...

  3. [Updating]点分治学习笔记

    Upd \(2020/2/15\),又补了一题 LuoguP2664 树上游戏 \(2020/2/14\),补了一道例题 LuoguP3085 [USACO13OPEN]阴和阳Yin and Yang ...

  4. 对于python 3.x与python2.x中新型类的继承特性总结

    (1)一般性继承特性 """ 该文件对于python 3.x 及python 2.x的New-style 类的一般性继承特性进行了说明和测试. (1)实例的继承特性:搜寻 ...

  5. 第十八篇 admin组件

    admin组件 admin组件使用 admin源码解析 admin组件使用 Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.你可以 ...

  6. leetcode 正则表达式 (动态规划)

    给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.' 和 '*' 的正则表达式匹配. '.' 匹配任意单个字符'*' 匹配零个或多个前面的那一个元素所谓匹配,是要涵盖 整个 字符串 s的 ...

  7. js原型链理解(4)-经典继承

    经典继承就是组合继承,就是组合构造函数和原型链的优点混合继承. 1.避免引用类型的属性初始化 2.避免相同方法的多次初始化 function Super(name){ this.ages = [100 ...

  8. Day 21:网络编程(2)

    以课程中feiQ为例,feiQ作为一个典型的网络编程应用,用一段代码尝试给自己的发送消息 import java.io.IOException; import java.net.DatagramPac ...

  9. POJ 1276:Cash Machine 多重背包

    Cash Machine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30006   Accepted: 10811 De ...

  10. mybatis环境搭建(eclipse,idea)

    基于java配置SSM,eclipse 新建maven,web项目 .... 项目结构: jar包 pom.xml spring和DispatcherServlet上下文 public class D ...