A. Median Smoothing
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice.

Applying the simplest variant of median smoothing to the sequence of numbers a1, a2, ..., an will result a new sequence b1, b2, ..., bnobtained by the following algorithm:

  • b1 = a1, bn = an, that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence.
  • For i = 2, ..., n - 1 value bi is equal to the median of three values ai - 1, ai and ai + 1.

The median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is number 2, and the median of set 1, 0, 1 is equal to 1.

In order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only.

Having made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it.

Now Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one.

Input

The first input line of the input contains a single integer n (3 ≤ n ≤ 500 000) — the length of the initial sequence.

The next line contains n integers a1, a2, ..., an (ai = 0 or ai = 1), giving the initial sequence itself.

Output

If the sequence will never become stable, print a single number  - 1.

Otherwise, first print a single integer — the minimum number of times one needs to apply the median smoothing algorithm to the initial sequence before it becomes is stable. In the second line print n numbers separated by a space  — the resulting sequence itself.

Sample test(s)
input
4
0 0 1 1
output
0
0 0 1 1
input
5
0 1 0 1 0
output
2
0 0 0 0 0
Note

In the second sample the stabilization occurs in two steps: , and the sequence 00000 is obviously stable.

比较恶心

很容易注意到对于一段连续的00或者11,他们下一步也一定是00或者11。

而对于每个ai,它的下一步取值跟ai-1,ai,ai+1有关,那么在00/11左边的和右边的是互不影响的。

于是我们可以认为每个00/11中间画一条线,把他们分开,像这样 0|0

于是序列被左右端点和这些我们画的“线”分成很多部分,答案就是这些区间的答案最大值

而这些区间又都没有连续的00或者11,那一定是0101010这样的

所以一段区间的答案只跟左右端点的值和区间长度有关

具体就很容易yy了

 #include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<deque>
#include<queue>
#include<bitset>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define inf 0x7fffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,ans,l,a[],mrk;
inline void jud(int l,int r)
{
if (l==r)return;
if(a[l]==a[r])
{
for (int i=l;i<=r;i++)a[i]=a[l];
ans=max(ans,(r-l)/);
return;
}else if (r-l>)
{
for (int i=l;i<=l+(r-l-)/;i++)a[i]=a[l];
for (int i=r-(r-l-)/;i<=r;i++)a[i]=a[r];
ans=max(ans,(r-l+)/-);
}
}
int main()
{
n=read();for (int i=;i<=n;i++)a[i]=read();mrk=-;
l=;
for(int i=;i<=n;i++)
{
if (a[i]==mrk){l=i;continue;}
mrk=-;
if (i==n)jud(l,i);
else if (a[i]==a[i-]&&i!=)jud(l,i-),l=i,mrk=a[i]; }
printf("%d\n",ans);
for (int i=;i<=n;i++)printf("%d ",a[i]);
}

cf590A

cf590A Median Smoothing的更多相关文章

  1. Codeforces Round #327 (Div. 2) B. Rebranding C. Median Smoothing

    B. Rebranding The name of one small but proud corporation consists of n lowercase English letters. T ...

  2. codeforces 590A A. Median Smoothing(思维)

    题目链接: A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces Round #327 (Div. 2) C. Median Smoothing 找规律

    C. Median Smoothing Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/p ...

  4. Codeforces Round #327 (Div. 2)C. Median Smoothing 构造

    C. Median Smoothing   A schoolboy named Vasya loves reading books on programming and mathematics. He ...

  5. 【22.70%】【codeforces 591C】 Median Smoothing

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. Codeforces 590 A:Median Smoothing

    A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. CodeForces 590A Median Smoothing

    构造题. 答案可以o(n)构造出来.首先要发现规律.只有01交替的串才可能变化,变化规律如下: 1开头,长度为偶数(0结尾):变(len-2)/2次 变完后 前半1 后半01开头,长度为奇数(1结尾) ...

  8. codeforces590a//Median Smoothing//Codeforces Round #327 (Div. 1)

    题意:一个数组,一次操作为:除首尾不变,其它的=它与前后数字的中位数,这样对数组重复几次后数组会稳定不变.问要操作几次,及最后的稳定数组. 挺难的题,参考了别人的代码和思路.总的来说就是找01010, ...

  9. ACM学习历程—CodeForces 590A Median Smoothing(分类讨论 && 数学)

    题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给一个串,头和尾每次变换保持不变. 中间的a[i]变成a[i-1],a[i],a[i+ ...

随机推荐

  1. Weibo SSO认证 和初次请求数据

    在进行SSO请求之前 我们要先去新浪微博的开放平台http://open.weibo.com/进行创建应用.以便得到appKey 和AppSecret. 点击创建应用 .进行资料填写  在这里 App ...

  2. jsp页面禁用缓存

    问题:为什么禁用JSP页面缓存 就是为了得到实时信息 怎样禁用JSP页面缓存 1.在JSP页面设置 <meta http-equiv="pragma" content=&qu ...

  3. phpmyadmin安装出错,缺少 mysqli 扩展。请检查 PHP 配置

    下载了个phpmyadmin最新版本的,始终显示这样的内容,求助.如何解决哈?>缺少 mysqli 扩展.请检查 PHP 配置. <a href="Documentation.h ...

  4. bitmap index

    bitmap index 说明: set echo on drop table t purge; create table t ( processed_flag ) ); create bitmap ...

  5. AutoLayout(转)

    转自    http://blog.sina.com.cn/s/blog_9564cb6e0101wv9o.html controller和View的责任分配: 1.View指定固有的content  ...

  6. 关于Core Data的一些整理(三)

    关于Core Data的一些整理(三) 关于Core Data Stack的四种类与它们的关系如下: NSManagedObjectModel NSPersistentStore NSPersiste ...

  7. Rechability的简单使用

    AppDelegate.m #import "AppDelegate.h" #import "Reachability.h" @interface AppDel ...

  8. [技术翻译]Guava官方文档Ordering

    关于排序 Guava的链式比较器 例子 assertTrue(byLengthOrdering.reverse().isOrdered(list)); 梗概 Ordering是Guava的链式比较器类 ...

  9. POJ3658Matrix( 双重二分+负数+死循环)

    POJ 3658 Matrix 双重二分,wa了一下午,实在不太明白为啥一写二分就会进入死循环. INF要设的大一些,本题设0x3f3f3f3f会wa. 本题有负数, 二分时(l+r)/2与(l+r) ...

  10. cocos2d-x 获取当前播放第几帧最高效的方法

    前言 把互联网翻了个遍, 所有的方法都千篇一律. 用循环去判断! 很神奇的是, 几乎所有博文举的例子, 连数字都是一样的. 这么一个效率烂成渣的方法, 居然被普遍赞同. 以下是广为流传的方法. ; i ...