A. Median Smoothing
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

A schoolboy named Vasya loves reading books on programming and mathematics. He has recently read an encyclopedia article that described the method of median smoothing (or median filter) and its many applications in science and engineering. Vasya liked the idea of the method very much, and he decided to try it in practice.

Applying the simplest variant of median smoothing to the sequence of numbers a1, a2, ..., an will result a new sequence b1, b2, ..., bnobtained by the following algorithm:

  • b1 = a1, bn = an, that is, the first and the last number of the new sequence match the corresponding numbers of the original sequence.
  • For i = 2, ..., n - 1 value bi is equal to the median of three values ai - 1, ai and ai + 1.

The median of a set of three numbers is the number that goes on the second place, when these three numbers are written in the non-decreasing order. For example, the median of the set 5, 1, 2 is number 2, and the median of set 1, 0, 1 is equal to 1.

In order to make the task easier, Vasya decided to apply the method to sequences consisting of zeros and ones only.

Having made the procedure once, Vasya looked at the resulting sequence and thought: what if I apply the algorithm to it once again, and then apply it to the next result, and so on? Vasya tried a couple of examples and found out that after some number of median smoothing algorithm applications the sequence can stop changing. We say that the sequence is stable, if it does not change when the median smoothing is applied to it.

Now Vasya wonders, whether the sequence always eventually becomes stable. He asks you to write a program that, given a sequence of zeros and ones, will determine whether it ever becomes stable. Moreover, if it ever becomes stable, then you should determine what will it look like and how many times one needs to apply the median smoothing algorithm to initial sequence in order to obtain a stable one.

Input

The first input line of the input contains a single integer n (3 ≤ n ≤ 500 000) — the length of the initial sequence.

The next line contains n integers a1, a2, ..., an (ai = 0 or ai = 1), giving the initial sequence itself.

Output

If the sequence will never become stable, print a single number  - 1.

Otherwise, first print a single integer — the minimum number of times one needs to apply the median smoothing algorithm to the initial sequence before it becomes is stable. In the second line print n numbers separated by a space  — the resulting sequence itself.

Sample test(s)
input
4
0 0 1 1
output
0
0 0 1 1
input
5
0 1 0 1 0
output
2
0 0 0 0 0
Note

In the second sample the stabilization occurs in two steps: , and the sequence 00000 is obviously stable.

比较恶心

很容易注意到对于一段连续的00或者11,他们下一步也一定是00或者11。

而对于每个ai,它的下一步取值跟ai-1,ai,ai+1有关,那么在00/11左边的和右边的是互不影响的。

于是我们可以认为每个00/11中间画一条线,把他们分开,像这样 0|0

于是序列被左右端点和这些我们画的“线”分成很多部分,答案就是这些区间的答案最大值

而这些区间又都没有连续的00或者11,那一定是0101010这样的

所以一段区间的答案只跟左右端点的值和区间长度有关

具体就很容易yy了

 #include<set>
#include<map>
#include<cmath>
#include<ctime>
#include<deque>
#include<queue>
#include<bitset>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define inf 0x7fffffff
#define pa pair<int,int>
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,ans,l,a[],mrk;
inline void jud(int l,int r)
{
if (l==r)return;
if(a[l]==a[r])
{
for (int i=l;i<=r;i++)a[i]=a[l];
ans=max(ans,(r-l)/);
return;
}else if (r-l>)
{
for (int i=l;i<=l+(r-l-)/;i++)a[i]=a[l];
for (int i=r-(r-l-)/;i<=r;i++)a[i]=a[r];
ans=max(ans,(r-l+)/-);
}
}
int main()
{
n=read();for (int i=;i<=n;i++)a[i]=read();mrk=-;
l=;
for(int i=;i<=n;i++)
{
if (a[i]==mrk){l=i;continue;}
mrk=-;
if (i==n)jud(l,i);
else if (a[i]==a[i-]&&i!=)jud(l,i-),l=i,mrk=a[i]; }
printf("%d\n",ans);
for (int i=;i<=n;i++)printf("%d ",a[i]);
}

cf590A

cf590A Median Smoothing的更多相关文章

  1. Codeforces Round #327 (Div. 2) B. Rebranding C. Median Smoothing

    B. Rebranding The name of one small but proud corporation consists of n lowercase English letters. T ...

  2. codeforces 590A A. Median Smoothing(思维)

    题目链接: A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  3. Codeforces Round #327 (Div. 2) C. Median Smoothing 找规律

    C. Median Smoothing Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/591/p ...

  4. Codeforces Round #327 (Div. 2)C. Median Smoothing 构造

    C. Median Smoothing   A schoolboy named Vasya loves reading books on programming and mathematics. He ...

  5. 【22.70%】【codeforces 591C】 Median Smoothing

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  6. Codeforces 590 A:Median Smoothing

    A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. CodeForces 590A Median Smoothing

    构造题. 答案可以o(n)构造出来.首先要发现规律.只有01交替的串才可能变化,变化规律如下: 1开头,长度为偶数(0结尾):变(len-2)/2次 变完后 前半1 后半01开头,长度为奇数(1结尾) ...

  8. codeforces590a//Median Smoothing//Codeforces Round #327 (Div. 1)

    题意:一个数组,一次操作为:除首尾不变,其它的=它与前后数字的中位数,这样对数组重复几次后数组会稳定不变.问要操作几次,及最后的稳定数组. 挺难的题,参考了别人的代码和思路.总的来说就是找01010, ...

  9. ACM学习历程—CodeForces 590A Median Smoothing(分类讨论 && 数学)

    题目链接:http://codeforces.com/problemset/problem/590/A 题目大意是给一个串,头和尾每次变换保持不变. 中间的a[i]变成a[i-1],a[i],a[i+ ...

随机推荐

  1. CF 19D Points 【线段树+平衡树】

    在平面上进行三种操作: 1.add x y:在平面上添加一个点(x,y) 2.remove x y:将平面上的点(x,y)删除 3.find x y:在平面上寻找一个点,使这个点的横坐标大于x,纵坐标 ...

  2. javascript touch事件

    touchstart : 當手指觸摸屏幕時觸發:即使已經有一個手指放在了屏幕上也會觸發. touchmove : 當手指在屏幕上滑動時連續的觸發,在這個事件發生期間,商用preventDefault( ...

  3. 汉诺塔III 递推题

    题目描述: 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右边的杆上,条件是一次只能移动 ...

  4. U盘启动安装CentOS 6.3

    无光驱U盘启动安装CentOS 6.3的一些必要条件: 1.主板要支持U盘启动 2.8G的U盘 3.UltraISO软件 http://www.linuxidc.com/Linux/2010-03/2 ...

  5. Android(java)学习笔记223:上下文的区分

    1.两种上下文:  (1)Activity.this                               界面的上下文 (2)getApplicationContext()         整 ...

  6. discuz, 使用同一数据库, 只是换个环境, 数据就不一样了

    如题, 本以为是由于某些冲突导致, 细查之后, 发现是开了缓存了, 把缓存关掉或是在后台清理缓存就OK了 后台清理缓存, 全局--性能优化--内存优化  清理缓存 关闭缓存, 修改全局配置文件, co ...

  7. JSP学习--常用作用域

    page:当前页面,也就是只要跳到别的页面就失效了 request:一次会话,简单的理解就是一次请求范围内有效 session:浏览器进程,只要当前页面没有被关闭(没有被程序强制清除),不管怎么跳转都 ...

  8. CI 中css样式或者js样式加载不进来的情况

    首先,目录应该是放在根目录下面的,和 application 目录同级 然后再application\config\config.php ,将默认路径配置成为自己的本访问路径 $config['bas ...

  9. Web中常用字体介绍(转)

    1.在Web编码中,CSS默认应用的Web字体是有限的,虽然在新版本的CSS3,我们可以通过新增的@font-face属性来引入特殊的浏览器加载字体. 浏览器中展示网页文字内容时,文字字体都会按照设计 ...

  10. 运行phpize时出现:Cannot find autoconf. Please check your autoconf installation

    运行/usr/local/webserver/php/bin/phpize时出现:Configuring for:PHP Api Version: 20041225Zend Module Api No ...