【hdu 4374】One Hundred Layer
【题目链接】
【算法】
不难看出,这题可以用动态规划来解决
f[i][j]表示第i行第j列能够取得的最大分数
则如果向右走,状态转移方程为f[i][j]=max{f[i-1][k]+a[i][k]+a[i][k+1]+...+a[i][j]}(i-T<=k<=j)
如果向左走,则状态转移方程为f[i][j]=max{f[i-1][k]+a[i][k]+a[i][k-1]+...+a[i][j]} (j<=k<=i+T)
用前缀和优化,s[i][j]表示第i行前j个数的和
则式子被简化为 :
向右走 : f[i][j] = max{f[i-1][k]+s[i][j]-s[i][k-1]} (i-T<=k<=j)
向左走 : f[i][j] = max{f[i-1][k]+s[i][k]-s[i][j-1]} (j<=k<=i+T)
但是这样做还是会TLE,所以我们继续优化 :
我们可以将第一个状态转移方程中s[i][j]提出,式子被写成f[i][j] = max{f[i-1][k]-s[i][k-1]}+s[i][j] (i-T<=k<=j)
将第二个状态转移方程中s[i][j-1]提出,式子被写成f[i][j] = max{f[i-1][k]+s[i][k]}+s[i][j-1] (j<=k<=i+T)
于是我们就可以用单调队列维护最值,时间复杂度 : O(数据组数*N*M)
【代码】
#include<bits/stdc++.h>
using namespace std;
#define MAXN 100
#define MAXM 10000 typedef long long LL; struct info {
LL x,val;
};
LL i,j,N,M,X,T,tmp,ans;
LL a[MAXN+][MAXM+],s[MAXN+][MAXM+],f[MAXN+][MAXM+];
deque<info> q; template <typename T> inline void read(T &x) {
LL f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = x * + c - '';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
} int main() { while (cin >> N >> M >> X >> T) {
ans = -2e9;
for (i = ; i <= N; i++) {
for (j = ; j <= M; j++) {
read(a[i][j]);
}
} for (i = ; i <= N; i++) {
for (j = ; j <= M; j++) {
s[i][j] = s[i][j-] + a[i][j];
}
} for (i = ; i <= N; i++) {
for (j = ; j <= M; j++) {
f[i][j] = -2e9;
}
}
for (i = X; i >= X - T; i--) f[][i] = s[][X] - s[][i-];
for (i = X; i <= X + T; i++) f[][i] = s[][i] - s[][X-]; for (i = ; i <= N; i++) {
q.clear();
for (j = ; j <= M; j++) {
while ((!q.empty()) && (j - q.front().x > T)) q.pop_front();
tmp = f[i-][j] - s[i][j-];
while ((!q.empty()) && (tmp >= q.back().val)) q.pop_back();
q.push_back((info){j,tmp});
f[i][j] = q.front().val + s[i][j];
}
q.clear();
for (j = M; j >= ; j--) {
while ((!q.empty()) && (q.front().x - j > T)) q.pop_front();
tmp = f[i-][j] + s[i][j];
while ((!q.empty()) && (tmp >= q.back().val)) q.pop_back();
q.push_back((info){j,tmp});
f[i][j] = max(f[i][j],q.front().val-s[i][j-]);
}
}
for (i = ; i <= M; i++) ans = max(ans,f[N][i]);
writeln(ans);
} return ; }
【hdu 4374】One Hundred Layer的更多相关文章
- 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题
[HDU 3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...
- 【HDU 5647】DZY Loves Connecting(树DP)
pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...
- -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】
[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...
- 【HDU 2196】 Computer(树的直径)
[HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...
- 【HDU 2196】 Computer (树形DP)
[HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...
- 【HDU 5145】 NPY and girls(组合+莫队)
pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...
- 【hdu 1043】Eight
[题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...
- 【HDU 3068】 最长回文
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3068 [算法] Manacher算法求最长回文子串 [代码] #include<bits/s ...
- 【HDU 4699】 Editor
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=4699 [算法] 维护两个栈,一个栈放光标之前的数,另外一个放光标之后的数 在维护栈的同时求最大前缀 ...
随机推荐
- (7)C#连DB2---oledb方式
1安装客户端 安装DbVisualizer Free 客户端软件 2编目 用 win+r 输入 db2cmd 启动命令行 要远程操作数据库,首先要进行编目,分三个步骤: 1. 在客户端建立服务器端数 ...
- centos 下完全卸载 mysql5.6
查看已经安装的服务 rpm –qa|grep -i mysql -i 作用是不区分大小写 yum remove mysql mysql-server mysql-libs compat-mysql51 ...
- Linux下使用vi新建文件保存文件时遇到错误:E212: Can't open file for writing
出现E212: Can't open file for writing的问题是由于权限问题导致的,解决方法有以下思路: 1.使用root进行登录,然后再操作. 2.在使用命令时,前面加sudo. 3. ...
- 单点登录CAS-Demo
版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 1安全证书配置 2部署服务端CAS-Server 3部署CAS-Client 4测试SSO 1,安全证书配置 CAS默认 ...
- iOS知识点全梳理-b
感谢分享 原文链接:http://www.jianshu.com/p/5d2163640e26 序言 目前形势,参加到iOS队伍的人是越来越多,甚至已经到供过于求了.今年,找过工作人可能会更深刻地体会 ...
- 数据结构与算法之贪心算法 C++实现
1.基本思路:从问题的某一个初始解触发逐步逼近给定的目标,以尽可能快的求得更好的解. 当达到算法中某一步不能再继续前进时.就停止算法,给出近似值.也就是说贪心算法并不从总体最优考虑,它所作出的选择仅仅 ...
- Development of Intel chipsets interconnection
http://en.wikipedia.org/wiki/Chipset Chipset From Wikipedia, the free encyclopedia A chipset is ...
- 关于cocos2d-x 3.0的点击交互处理
转自:http://blog.csdn.net/fansongy/article/details/12716671 1.概述 游戏也好,程序也好,仅仅有能与用户交互才有意义.手机上的交互大致能 ...
- PandoraBox 支持3G无线上网卡(电信卡3G卡)(三)
笔者采用的是华为EC122无线上网卡 一:编辑/etc/modules.d/60-usb-serial usbserial vendor=0x12d1 product=0x1505 二:编辑/et ...
- GuozhongCrawler系列教程 (5) TransactionRequest具体解释
为了实现和维护并发抓取的属性信息提供线程安全的事务请求.TransactionRequest是一个抽象类自己不能设置Processor,却须要实现 TransactionCallBack接口.Tran ...