https://en.wikipedia.org/wiki/Modular_exponentiation

蒙哥马利(Montgomery)幂模运算是快速计算a^b%k的一种算法,是RSA加密算法的核心之一。

蒙哥马利模乘的优点在于减少了取模的次数(在大数的条件下)以及简化了除法的复杂度(在2的k次幂的进制下除法仅需要进行左移操作)。模幂运算是RSA 的核心算法,最直接地决定了RSA 算法的性能。
针对快速模幂运算这一课题,西方现代数学家提出了大量的解决方案,通常都是先将幂模运算转化为乘模运算。
 

Modular exponentiation is a type of exponentiation取幂,求幂;乘方 performed over a modulus模数,系数.

It is useful in computer science, especially in the field of public-key cryptography.

The operation of modular exponentiation calculates the remainder when an integer b 底数(the base) raised to the eth power (the exponent指数), be, is divided by a positive integer m (the modulus).

In symbols, given base b, exponent e, and modulus m, the modular exponentiation c is: c ≡ be (mod m).        //c=b的e次方 %m

For example, given b = 5, e = 3 and m = 13, the solution c = 8 is the remainder of dividing 53 = 125 by 13.      //c=5^3%13=125%13   因为125=13*9+8 ,所以125对13求余,结果是8

Given integers b and e, and a positive integer m, a unique solution c exists with the property 0 ≤ c < m.

Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is:

c ≡ be ≡ de mod m where e < 0 and b ⋅ d ≡ 1 mod m.

Modular exponentiation similar to the one described above are considered easy to compute, even when the numbers involved are enormous巨大的.

On the other hand, computing the discrete logarithm离散对数 – that is, the task of finding the exponente when given bc, and m – is believed to be difficult.

This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms.

Modular_exponentiation模幂运算的更多相关文章

  1. RSA简介(二)——模幂算法

    RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...

  2. 快速幂模n运算

    模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...

  3. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

  4. POJ1026 Cipher(置换的幂运算)

    链接:http://poj.org/problem?id=1026 Cipher Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  5. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  6. 迭代加深搜索 codevs 2541 幂运算

    codevs 2541 幂运算  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 从m开始,我们只需要6次运算就可以计算出 ...

  7. poj 3128 Leonardo's Notebook (置换群的整幂运算)

    题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd9 ...

  8. RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路

    void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...

  9. 算数运算符: + - * / //(地板除) %(取余) **(幂运算) / 比较运算符 > < >= <= == !=

    # ### python运算符 #(1) 算数运算符: + - * / //(地板除) %(取余) **(幂运算) var1 = 5 var2 = 8 # +res = var1 + var2 pri ...

随机推荐

  1. 【Redis】二、Redis高级特性

    (三) Redis高级特性   前面我们介绍了Redis的五种基本的数据类型,灵活运用这五种数据类型是使用Redis的基础,除此之外,Redis还有一些特性,掌握这些特性能对Redis有进一步的了解, ...

  2. HTML5定制全选列头

    随着HTML5产品分支的不断深入使用,HTML5的需求也是越来越多,表格组件的使用也不例外,什么排序,分页,自动列宽等.最近有客户提出了如果让表格的列头加上全选的功能.细细分析其实就是两部分,表格的b ...

  3. LeetCode141LinkedListCycle和142LinkedListCycleII

    141题:判断链表是不是存在环! // 不能使用额外的存储空间 public boolean hasCycle(ListNode head) { // 如果存在环的 两个指针用不一样的速度 会相遇 L ...

  4. Stuts2学习——HelloWorld

    这两天从对Struts一窍不通到成功运行HelloWorld,在SSH这条路上迈出了第一步. 下面我把我的第一个Struts程序放上来: 一.新建web project,配置文件等准备工作 1. 新建 ...

  5. 字符串系列——KMP模板整理

    KMP模板整理 KMP与扩展KMP: /*vs 2017/ vs code以外编译器,去掉windows.h头文件和system("pause");*/ #include<i ...

  6. 数据结构---二叉搜索树BST实现

    1. 二叉查找树 二叉查找树(Binary Search Tree),也称为二叉搜索树.有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一 ...

  7. docker-ce安装官翻

    参考http://www.cnblogs.com/maple42/p/5868846.htmlhttp://blog.csdn.net/lizehua123/article/details/50601 ...

  8. Java 十二周总结

  9. 解决windows安装TensorFlow2.0beta版本时ERROR: Cannot uninstall 'wrapt'问题

    pip install -U --ignore-installed wrapt enum34 simplejson netaddr 参考:https://bugs.launchpad.net/rall ...

  10. 08.C语言:特殊函数

    C语言:特殊函数 1.递归函数: 与普通函数比较,执行过程不同,该函数内部调用它自己,它的执行必须要经过两个阶段:递推阶段,回归阶段: 当不满足回归条件,不再递推: #include <stdi ...