https://en.wikipedia.org/wiki/Modular_exponentiation

蒙哥马利(Montgomery)幂模运算是快速计算a^b%k的一种算法,是RSA加密算法的核心之一。

蒙哥马利模乘的优点在于减少了取模的次数(在大数的条件下)以及简化了除法的复杂度(在2的k次幂的进制下除法仅需要进行左移操作)。模幂运算是RSA 的核心算法,最直接地决定了RSA 算法的性能。
针对快速模幂运算这一课题,西方现代数学家提出了大量的解决方案,通常都是先将幂模运算转化为乘模运算。
 

Modular exponentiation is a type of exponentiation取幂,求幂;乘方 performed over a modulus模数,系数.

It is useful in computer science, especially in the field of public-key cryptography.

The operation of modular exponentiation calculates the remainder when an integer b 底数(the base) raised to the eth power (the exponent指数), be, is divided by a positive integer m (the modulus).

In symbols, given base b, exponent e, and modulus m, the modular exponentiation c is: c ≡ be (mod m).        //c=b的e次方 %m

For example, given b = 5, e = 3 and m = 13, the solution c = 8 is the remainder of dividing 53 = 125 by 13.      //c=5^3%13=125%13   因为125=13*9+8 ,所以125对13求余,结果是8

Given integers b and e, and a positive integer m, a unique solution c exists with the property 0 ≤ c < m.

Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is:

c ≡ be ≡ de mod m where e < 0 and b ⋅ d ≡ 1 mod m.

Modular exponentiation similar to the one described above are considered easy to compute, even when the numbers involved are enormous巨大的.

On the other hand, computing the discrete logarithm离散对数 – that is, the task of finding the exponente when given bc, and m – is believed to be difficult.

This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms.

Modular_exponentiation模幂运算的更多相关文章

  1. RSA简介(二)——模幂算法

    RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...

  2. 快速幂模n运算

    模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...

  3. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

  4. POJ1026 Cipher(置换的幂运算)

    链接:http://poj.org/problem?id=1026 Cipher Time Limit: 1000MS   Memory Limit: 10000K Total Submissions ...

  5. 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)

    CARDS Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1448   Accepted: 773 Description ...

  6. 迭代加深搜索 codevs 2541 幂运算

    codevs 2541 幂运算  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 从m开始,我们只需要6次运算就可以计算出 ...

  7. poj 3128 Leonardo's Notebook (置换群的整幂运算)

    题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd9 ...

  8. RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路

    void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...

  9. 算数运算符: + - * / //(地板除) %(取余) **(幂运算) / 比较运算符 > < >= <= == !=

    # ### python运算符 #(1) 算数运算符: + - * / //(地板除) %(取余) **(幂运算) var1 = 5 var2 = 8 # +res = var1 + var2 pri ...

随机推荐

  1. 机器学习_K近邻Python代码详解

    k近邻优点:精度高.对异常值不敏感.无数据输入假定:k近邻缺点:计算复杂度高.空间复杂度高 import numpy as npimport operatorfrom os import listdi ...

  2. CAD使用SetXData写数据(网页版)

    主要用到函数说明: MxDrawEntity::SetXData 设置实体的扩展数据,详细说明如下: 参数 说明 [in] IMxDrawResbuf* pXData 扩展数据链表 js代码实现如下: ...

  3. Extjs查询实现

    效果图如上: 页面代码: Ext.QuickTips.init(); //放在图标上会自动提示信息 Ext.define('ExtApp.view.StudentList' , { extend : ...

  4. STL++?pb_ds平板电视初步探索

    什么是pb_ds? 除了众所周知的STL库,c++还自带了ext库(应该可以这么叫吧),其中有用pb_ds命名的名称空间(俗称平板电视).这个名称空间下有四个数据类型结构.这些都是鲜为人知的.经过测试 ...

  5. java.lang unsupported classversion解决方法

    设置编译的jdk和运行的jdk环境版本是否一致.一般都是jdk导致的.刚开始用jdk1.6编译运行,死活不行,换成jdk1.7运行也是1.7,ok

  6. NFS文件服务

    安装NFS服务 Yum install nfs-utils –y 2.关闭防火墙 service iptables stop 3./etc/exports NFS服务配置文件 /home/share ...

  7. 网络基础——UDP

    UDP 1.UDP首部格式 源端口号(16) 目标端口号(16) UDP长度(16) UDP校验和(16) UDP长度:用来指出UDP的总长度 校验和:用来完成对UDP数据的差错检验,它是UDP协议提 ...

  8. NumPy 学习笔记(四)

    NumPy 算术函数: 1.numpy.reciprocal(arr) 返回参数逐个元素的倒数 2.numpy.power(one, two) 将第一个输入数组中的元素作为底数,计算它与第二个输入数组 ...

  9. pandas处理各类表格数据

    经常遇到Python读取excel和csv还有其他各种文件的内容.json还有web端的读取还是比较简单,但是excel和csv的读写是很麻烦.这里记录了pandas库提供的方法来实现文本内容和Dat ...

  10. 洛谷 2921 [USACO08DEC]在农场万圣节Trick or Treat on the Farm

    [题解] 就是基环外向树森林找环,然后从环向外统计size就可以了. #include<cstdio> #include<cstring> #include<algori ...