Modular_exponentiation模幂运算
https://en.wikipedia.org/wiki/Modular_exponentiation
蒙哥马利(Montgomery)幂模运算是快速计算a^b%k的一种算法,是RSA加密算法的核心之一。
Modular exponentiation is a type of exponentiation取幂,求幂;乘方 performed over a modulus模数,系数.
It is useful in computer science, especially in the field of public-key cryptography.
The operation of modular exponentiation calculates the remainder when an integer b 底数(the base) raised to the eth power (the exponent指数), be, is divided by a positive integer m (the modulus).
In symbols, given base b, exponent e, and modulus m, the modular exponentiation c is: c ≡ be (mod m). //c=b的e次方 %m
For example, given b = 5, e = 3 and m = 13, the solution c = 8 is the remainder of dividing 53 = 125 by 13. //c=5^3%13=125%13 因为125=13*9+8 ,所以125对13求余,结果是8
Given integers b and e, and a positive integer m, a unique solution c exists with the property 0 ≤ c < m.
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is:
- c ≡ be ≡ d−e mod m where e < 0 and b ⋅ d ≡ 1 mod m.
Modular exponentiation similar to the one described above are considered easy to compute, even when the numbers involved are enormous巨大的.
On the other hand, computing the discrete logarithm离散对数 – that is, the task of finding the exponente when given b, c, and m – is believed to be difficult.
This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms.
Modular_exponentiation模幂运算的更多相关文章
- RSA简介(二)——模幂算法
RSA最终加密.解密都要用到模乘的幂运算,简称模幂运算. 回忆一下RSA,从明文A到B B=Ae1%N 对B解密,就是 A=Be2%N 其中,一般来说,加密公钥中的e1一般会比较小,取65537居多, ...
- 快速幂模n运算
模运算里的求幂运算,比如 5^596 mod 1234, 当然,直接使用暴力循环也未尝不可,在书上看到一个快速模幂算法 大概思路是,a^b mod n ,先将b转换成二进制,然后从最高位开始(最高位一 ...
- [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)
Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...
- POJ1026 Cipher(置换的幂运算)
链接:http://poj.org/problem?id=1026 Cipher Time Limit: 1000MS Memory Limit: 10000K Total Submissions ...
- 组合数学 - 置换群的幂运算 --- poj CARDS (洗牌机)
CARDS Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 1448 Accepted: 773 Description ...
- 迭代加深搜索 codevs 2541 幂运算
codevs 2541 幂运算 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 从m开始,我们只需要6次运算就可以计算出 ...
- poj 3128 Leonardo's Notebook (置换群的整幂运算)
题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd9 ...
- RSA算法的C++string实现(模幂算法和欧几里得算法的使用)后附思路
void resetNumA(string numAStr); //使用string重置numB void resetNumB(string numBStr); //将数组转换为字符串,用于输出 st ...
- 算数运算符: + - * / //(地板除) %(取余) **(幂运算) / 比较运算符 > < >= <= == !=
# ### python运算符 #(1) 算数运算符: + - * / //(地板除) %(取余) **(幂运算) var1 = 5 var2 = 8 # +res = var1 + var2 pri ...
随机推荐
- jmeter接口测试小结
摘自:http://www.cnblogs.com/houzhizhe/p/6839736.html JMeter做http接口压力测试 测前准备 用JMeter做接口的压测非常方便,在压测之前我们需 ...
- 个人总结的常用java,anroid网站
http://blog.csdn.net/wanghao200906/article/details/49334987
- Xshell(smarTTY)连接Linux虚拟机失败(未开放22端口)解决办法
1.关闭防火墙: 命令:sudo ufw disable 2.安装openssh-server以及openssh-client: 命令:sudo apt-get install openssh-ser ...
- Jmeter学习笔记之逻辑控制器-Runtime Controller
文章目录 Runtime Controller介绍 Runtime Controller 编辑界面 Once Only Controller介绍 Once Only Controller 配置界面 O ...
- CF441D
题目大意 给出一个有n个数的序列 求符合 区间各数或起来的数大于区间最大数 的区间的个数 题解 预处理出每个数每一位是0的那位左边最近的1和右边最近的1,用单调栈找出每个最大值所在的区间的左右端点,统 ...
- Python异常捕捉的一个小问题
问题: names = ['taotao','songwenjing','liu','li']I = iter(names)while True: try: s = next(I) except Ex ...
- Python基础(五)集合与函数
一.Set集合 set和dict类似,也是一组key的集合,但不存储value.由于key不能重复,所以,在set中,没有重复的key.下面一起看一下set的定义和使用方法: (一),set定义 1 ...
- 【Codeforces 600C】Make Palindrome
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 计算出来每个字母出现的次数. 把字典序大的奇数出现次数的字母换成字典序小的奇数出现次数的字母贪心即可. 注意只有一个字母的情况 然后贪心地把字 ...
- IDEA建立一个可运行的struts2项目
参考博客:https://blog.csdn.net/shuai_wy/article/details/79027573 直接使用IDEA创建struts2项目,配置好tomcat后是跑不起来的 需要 ...
- linux下git+github个人使用记录
Linux: 安装git的命令: sudo apt install git 查看版本确认安装成功: git --version 生成密钥: ssh-keygen -t rsa -C "you ...