二叉树的遍历方式包括前序遍历中序遍历后序遍历,其实现方式包括递归实现非递归实现

前序遍历:根节点 | 左子树 | 右子树

中序遍历:左子树 | 根节点 | 右子树

后序遍历:左子树 | 右子树 | 根节点

1. 递归实现

递归方式实现代码十分简洁,三种遍历方式的递归实现代码结构相同,只是执行顺序有所区别。

前序遍历:

public class preOrderRecur {
List<Integer> res = new ArrayList<>();
public List<Integer> preOrderTraversal(TreeNode root) {
if (root != null) {
res.add(root.val); // 根节点
preOrderTraversal(root.left); // 左子树
preOrderTraversal(root.right); // 右子树
}
return res;
}
}

中序遍历:

public class inOrderRecur {
List<Integer> res = new ArrayList<>();
public List<Integer> inOrderTraversal(TreeNode root) {
if (root != null) {
inOrderTraversal(root.left); // 左子树
res.add(root.val); // 根节点
inOrderTraversal(root.right); // 右子树
}
}
return res;
}

后序遍历:

public class inOrderRecur {
List<Integer> res = new ArrayList<>();
public List<Integer> inOrderTraversal(TreeNode root) {
if (root != null) {
inOrderTraversal(root.left); // 左子树
inOrderTraversal(root.right); // 右子树
res.add(root.val); // 根节点
}
}
return res;
}

2. 迭代实现

2.1 使用辅助栈——空间复杂度O(N)

2.1.1 中序遍历
  • 从当前结点一直向其最左孩子搜索,直到没有左孩子了停止,这个过程中将路程中的所有结点入栈;
  • 弹出栈顶元素,将其记录在答案中,并把当前结点置为弹出元素的右孩子并重复第一步过程。
public class inOrderIterator {
List<Integer> res = new ArrayList<>();
public List<Integer> inOrderTraversal(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
while (root != null || !stack.isEmpty()) {
if (root != null) {
stack.push(root);
root = root.left;
} else {
TreeNode node = stack.pop();
res.add(node.val);
root = node.right;
}
}
return res;
}
}
2.1.2 前序遍历

方法1:因为前序遍历访问顺序是“中-左-右”,所以可以先将根结点压栈,然后按照下列步骤执行。

  • 如果栈不为空,则弹出栈顶元素存入结果中;
  • 如果弹出元素的右孩子不为空则将右孩子压栈,然后如果其左孩子也不为空将其左孩子压栈(因为栈是后入先出的,所以为了达到“中-左-右”的顺序,需要先压入右孩子,再压入左孩子)。
public class preOrderIterator {
List<Integer> res = new ArrayList<>();
public List<Integer> inOrderTraversal(TreeNode root) {
if (root == null) return res;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
root = stack.pop();
res.add(root.val);
// 右孩子压栈
if (root.right != null) stack.push(root.right);
// 左孩子压栈
if (root.left != null) stack.push(root.left);
}
return res;
}
}

方法2:根据中序遍历进行微调:

public class preOrderIterator {
List<Integer> res = new ArrayList<>();
public List<Integer> inOrderTraversal(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
while (root != null || !stack.isEmpty()) {
if (root != null) {
res.add(root.val);
stack.push(root);
root = root.left;
} else {
TreeNode node = stack.pop();
root = node.right;
}
}
return res;
}
}
2.1.3 后序遍历

因为前序遍历的顺序是“左-中-右”,而后序遍历顺序是“左-右-中”,不考虑左结点,区别只是在于中结点和右结点的顺序进行了反向而已,因此可以使用前序遍历的代码进行调整,只需要将前序遍历对左右孩子压栈的顺序反向即可,即先压入左孩子,再压入右孩子。除此之外,因为按照这种方法调整得到的遍历顺序为“中-右-左”,正好是后序遍历的反向顺序,因此在获得遍历序列后还需进行逆序操作。

public class postOrderIterator {
List<Integer> res = new LinkedList<>();
public List<Integer> postOrderTraversal(TreeNode root) {
if (root == null) return res;
Stack<TreeNode> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty()) {
root = stack.pop();
// 头插法
res.add(0, root.val);
// 左孩子压栈
if (root.left != null) stack.push(root.left);
// 右孩子压栈
if (root.right != null) stack.push(root.right);
}
return res;
}
}

2.2 Morris遍历——空间复杂度O(1)

该方法的思路简单说就是,对于每一个结点,找到它左孩子的最右子结点,因为按照正常访问顺序,其左孩子的最有子节点访问完后就应该访问其本身了,因此将其左孩子最右子节点的右指针指向它。基本步骤如下:

  • 如果当前结点左孩子为空,说明最左边访问完毕,将其置为其右孩子
  • 如果当前结点左孩子不为空,那么开始尝试找到该结点左孩子的最右子节点,建立连接关系
    • 如果找到的当前结点的左孩子的最右子节点右指针为空,说明还未建立连接关系,是首次访问当前结点,那么将该最右结点的右指针指向当前结点,然后当前结点向左孩子走一步继续重复所有步骤。
    • 如果找到的当前结点的左孩子的最右子节点右指针不为空,说明已建立过连接关系,是第二次访问当前结点,这意味着当前结点的左子树应该已经全部遍历完了,此时应恢复连接关系重新置为空,然后当前结点向右孩子走一步继续重复所有步骤。

该方法虽然保证了O(1)的空间复杂度,但在遍历过程中改变了部分结点的指向,破坏了树的结构。

2.2.1 中序遍历
public class inOrderMorris {
List<Integer> res = new ArrayList<>();
public List<Integer> inOrderTraversal(TreeNode root) {
TreeNode pre = null;
TreeNode cur = root;
while (cur != null) {
if (cur.left == null) {
res.add(cur.val);
cur = cur.right;
} else {
pre = cur.left;
while (pre.right != null && pre.right != cur) pre = pre.right;
if (pre.right == null) {
pre.right = cur;
cur = cur.left;
} else {
res.add(cur.val);
pre.right = null;
cur = cur.right;
}
}
}
return res;
}
}
2.2.2 前序遍历
public class preOrderMorris {
List<Integer> res = new ArrayList<>();
public List<Integer> preOrderTraversal(TreeNode root) {
TreeNode pre = null;
TreeNode cur = root;
while (cur != null) {
if (cur.left == null) {
res.add(cur.val);
cur = cur.right;
} else {
pre = cur.left;
while (pre.right != null && pre.right != cur) pre = pre.right;
if (pre.right == null) {
res.add(cur.val);
pre.right = cur;
cur = cur.left;
} else {
pre.right = null;
cur = cur.right;
}
}
}
return res;
}
}
2.2.3 后序遍历

前序遍历反向的思想

public class postOrderMorris {
List<Integer> res = new LinkedList<>();
public List<Integer> postOrderTraversal(TreeNode root) {
TreeNode pre = null;
TreeNode cur = root;
while (cur != null) {
if (cur.right == null) {
res.add(0, cur.val);
cur = cur.left;
} else {
pre = cur.right;
while (pre.left != null && pre.left != cur) pre = pre.left;
if (pre.left == null) {
res.add(0, cur.val);
pre.left = cur;
cur = cur.right;
} else {
pre.left = null;
cur = cur.left;
}
}
}
return res;
}
}

基于Java的二叉树的三种遍历方式的递归与非递归实现的更多相关文章

  1. C++编程练习(8)----“二叉树的建立以及二叉树的三种遍历方式“(前序遍历、中序遍历、后续遍历)

    树 利用顺序存储和链式存储的特点,可以实现树的存储结构的表示,具体表示法有很多种. 1)双亲表示法:在每个结点中,附设一个指示器指示其双亲结点在数组中的位置. 2)孩子表示法:把每个结点的孩子排列起来 ...

  2. 二叉树及其三种遍历方式的实现(基于Java)

    二叉树概念: 二叉树是每个节点的度均不超过2的有序树,因此二叉树中每个节点的孩子只能是0,1或者2个,并且每个孩子都有左右之分. 位于左边的孩子称为左孩子,位于右边的孩子成为右孩子:以左孩子为根节点的 ...

  3. Java中List集合的三种遍历方式(全网最详)

    List集合在Java日常开发中是必不可少的,只要懂得运用各种各样的方法就可以大大提高我们开发的效率,适当活用各种方法才会使我们开发事半功倍. 我总结了三种List集合的遍历方式,下面一一来介绍. 首 ...

  4. PTA 二叉树的三种遍历(先序、中序和后序)

    6-5 二叉树的三种遍历(先序.中序和后序) (6 分)   本题要求实现给定的二叉树的三种遍历. 函数接口定义: void Preorder(BiTree T); void Inorder(BiTr ...

  5. Map三种遍历方式

    Map三种遍历方式 package decorator; import java.util.Collection; import java.util.HashMap; import java.util ...

  6. set的三种遍历方式-----不能用for循环遍历(无序)

    set的三种遍历方式,set遍历元素 list 遍历元素 http://blog.csdn.net/sunrainamazing/article/details/71577662 set遍历元素 ht ...

  7. for 、foreach 、iterator 三种遍历方式的比较

    习惯用法 for.foreach循环.iterator迭代器都是我们常用的一种遍历方式,你可以用它来遍历任何东西:包括数组.集合等 for 惯用法: List<String> list = ...

  8. 大数据学习day13------第三阶段----scala01-----函数式编程。scala以及IDEA的安装,变量的定义,条件表达式,for循环(守卫模式,推导式,可变参数以及三种遍历方式),方法定义,数组以及集合(可变和非可变),数组中常用的方法

    具体见第三阶段scala-day01中的文档(scala编程基础---基础语法)  1. 函数式编程(https://www.cnblogs.com/wchukai/p/5651185.html): ...

  9. Java中Map的三种遍历方法

    Map的三种遍历方法: 1. 使用keySet遍历,while循环: 2. 使用entrySet遍历,while循环: 3. 使用for循环遍历.   告诉您们一个小秘密: (下↓面是测试代码,最爱看 ...

随机推荐

  1. Java Web(5)-Servlet详解(上)

    一.Servlet 1. 什么是Servlet Servlet 是 JavaEE 规范之一,规范就是接口 Servlet 就 JavaWeb 三大组件之一,三大组件分别是:Servlet 程序.Fil ...

  2. 在CentOS 7 上为docker配置端口转发以兼容firewall

    在CentOS 7上当我们以类似下列命令将主机端口与容器端口映射时可能遇到无法访问容器服务的问题 docker run --name web_a -p 192.168.1.250:803:80 -d ...

  3. MYSQL的事物四大特性

    MYSQL的事物四大特性(ACID) 1.什么是事物? 事务(Transaction)是并发控制的基本单位.所谓的事务,它是由单独单元的一个或者多个sql语句组成,在这个单元中,每个mysql语句是相 ...

  4. PHP rewind() 函数

    定义和用法 rewind() 函数将文件指针的位置倒回文件的开头. 如果成功,该函数返回 TRUE.如果失败,则返回 FALSE. 语法 rewind(file) 参数 描述 file 必需.规定已打 ...

  5. PHP log10() 函数

    实例 返回不同数的以 10 为底的对数: <?phpecho(log10(2.7183) . "<br>");echo(log10(2) . "< ...

  6. 实践录丨如何在鲲鹏服务器OpenEuler操作系统中快速部署OpenGauss数据库

    本文适合需要快速了解OpenGauss基本使用和操作的单机用户,可以短时间内完成安装体验.对于企业级生产使用或者需要部署多台服务器的,不适合本文. 因为业务需要,要在鲲鹏架构里安装单机版的OpenGa ...

  7. Android Studio中如何使用自定义的framework库

    在安卓app开发中,通常不会遇到需要使用自定义framework库的情况,使用的都是标准的内核库.但也有例外,比如针对定制化的ROM,ROM厂商可能在ROM中对安卓源码做过修改,对应用层app暴露出与 ...

  8. 树形DP 学习笔记(树形DP、树的直径、树的重心)

    前言:寒假讲过树形DP,这次再复习一下. -------------- 基本的树形DP 实现形式 树形DP的主要实现形式是$dfs$.这是因为树的特殊结构决定的——只有确定了儿子,才能决定父亲.划分阶 ...

  9. pycharm2020专业版永久激活

    pycharm专业版激活 1. 下载pycharm(专业版) 注意:这里一定要去官网下载正版的专业版pycharm. pycharm官网 但是这是pycharm的最新版,目前激活教程仅适用以前的202 ...

  10. Java日志框架(一)

    在项目开发过程中,我们可以通过 debug 查找问题.而在线上环境我们查找问题只能通过打印日志的方式查找问题.因此对于一个项目而言,日志记录是一个非常重要的问题.因此,如何选择一个合适的日志记录框架也 ...