随着移动互联网的发展以及机器学习等热门领域带给人们的冲击,让越来越多的人接触并开始学习 Python。无论你是是科班出身还是非科班转行,Python 无疑都是非常适合你入门计算机世界的第一门语言,其语法非常简洁,写出的程序易懂,这也是 Python 一贯的哲学「简单优雅」,在保证代码可读的基础上,用尽可能少的代码完成你的想法。

那么,我们学习 Python 到什么程度,就可以开始找工作了呢,大家都知道,实践是检验真理的唯一标准,那么学到什么程度可以找工作,当然得看市场的需求,毕竟企业招你来是工作的,而不是让你来带薪学习的。

所以,今天我们就试着爬取下拉钩上关于 Python 的招聘信息,来看看市场到底需要什么样的人才。

网页结构分析

打开拉钩网首页,输入关键字「Python」,接着按 F12 打开网页调试面板,切换到「Network」选项卡下,过滤条件选上「XHR」,一切准备就绪之后点击搜索,仔细观察网页的网络请求数据。

从这些请求中我们可以大致猜测到数据好像是从 jobs/positionAjax.json 这个接口获取的。

别急,我们来验证下,清空网络请求记录,翻页试试。当点击第二页的时候,请求记录如下。

可以看出,这些数据是通过 POST 请求获取的,Form Data 中的 pn 就是当前页码了。好了,网页分析好了,接下来就可以写爬虫拉取数据了。你的爬虫代码看起来可能会是这样的。

url = 'https://www.lagou.com/jobs/positionAjax.json?px=new&needAddtionalResult=false'
headers = """
accept: application/json, text/javascript, */*; q=0.01
origin: https://www.lagou.com
referer: https://www.lagou.com/jobs/list_python?px=new&city=%E5%85%A8%E5%9B%BD
user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36
""" headers_dict = headers_to_dict(headers) def get_data_from_cloud(page): params = { 'first': 'false', 'pn': page, 'kd': 'python' } response = requests.post(url, data=params, headers=headers_dict, timeout=3) result = response.text write_file(result) for i in range(76): get_data_from_cloud(i + 1)

程序写好之后,激动的心,颤抖的手,满怀期待的你按下了 run 按钮。美滋滋的等着接收数据呢,然而你得到的结果数据很大可能是这样的。

{"success":true,"msg":null,"code":0,"content":{"showId":"8302f64","hrInfoMap":{"6851017":{"userId":621208... {"status":false,"msg":"您操作太频繁,请稍后再访问","clientIp":"xxx.yyy.zzz.aaa","state":2402} ... 

不要怀疑,我得到的结果就是这样的。这是因为拉勾网做了反爬虫机制,对应的解决方案就是不要频繁的爬,每次获取到数据之后适当停顿下,比如每两个请求之间休眠 3 秒,然后请求数据时再加上 cookie 信息。完善之后的爬虫程序如下:

home_url = 'https://www.lagou.com/jobs/list_python?px=new&city=%E5%85%A8%E5%9B%BD'
url = 'https://www.lagou.com/jobs/positionAjax.json?px=new&needAddtionalResult=false'
headers = """
accept: application/json, text/javascript, */*; q=0.01
origin: https://www.lagou.com
referer: https://www.lagou.com/jobs/list_python?px=new&city=%E5%85%A8%E5%9B%BD
user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.116 Safari/537.36
""" headers_dict = string_util.headers_to_dict(headers) def get_data_from_cloud(page): params = { 'first': 'false', 'pn': page, 'kd': 'python' } s = requests.Session() # 创建一个session对象 s.get(home_url, headers=headers_dict, timeout=3) # 用 session 对象发出 get 请求,获取 cookie cookie = s.cookies response = requests.post(url, data=params, headers=headers_dict, cookies=cookie, timeout=3) result = response.text write_file(result) def get_data(): for i in range(76): page = i + 1 get_data_from_cloud(page) time.sleep(5)

不出意外,这下可以就可以获得全部数据了,总共 1131 条。

数据清洗

上文我们将获取到的 json 数据存储到了 data.txt 文件中,这不方便我们后续的数据分析操作。我们准备用 pandas 对数据做分析,所以需要做一下数据格式化。

处理过程不难,只是有点繁琐。具体过程如下:

def get_data_from_file():
with open('data.txt') as f: data = [] for line in f.readlines(): result = json.loads(line) result_list = result['content']['positionResult']['result'] for item in result_list: dict = { 'city': item['city'], 'industryField': item['industryField'], 'education': item['education'], 'workYear': item['workYear'], 'salary': item['salary'], 'firstType': item['firstType'], 'secondType': item['secondType'], 'thirdType': item['thirdType'], # list 'skillLables': ','.join(item['skillLables']), 'companyLabelList': ','.join(item['companyLabelList']) } data.append(dict) return data data = get_data_from_file() data = pd.DataFrame(data) data.head(15)

数据分析

获取数据和清洗数据只是我们的手段,而不是目的,我们最终的目的是要通过获取到的招聘数据挖掘出招聘方的需求,以此为目标来不断完善自己的技能图谱。

城市

先来看看哪些城市的招聘需求最大,这里我们只取 Top15 的城市数据。

top = 15
citys_value_counts = data['city'].value_counts()
citys = list(citys_value_counts.head(top).index)
city_counts = list(citys_value_counts.head(top)) bar = (
Bar()
.add_xaxis(citys)
.add_yaxis("", city_counts)
)
bar.render_notebook()
pie = (
Pie()
.add("", [list(z) for z in zip(citys, city_counts)])
.set_global_opts(title_opts=opts.TitleOpts(title=""))
.set_global_opts(legend_opts=opts.LegendOpts(is_show=False)) ) pie.render_notebook()

由上图可以看出,北京占据了四分之一还多的招聘量,其次是上海,深圳,杭州,单单从需求量来说,四个一线城市中广州被杭州所代替。

这也就从侧面说明了我们为啥要去一线城市发展了。

学历

eduction_value_counts = data['education'].value_counts()

eduction = list(eduction_value_counts.index)
eduction_counts = list(eduction_value_counts) pie = (
Pie()
.add("", [list(z) for z in zip(eduction, eduction_counts)]) .set_global_opts(title_opts=opts.TitleOpts(title="")) .set_global_opts(legend_opts=opts.LegendOpts(is_show=False)) ) pie.render_notebook()

看来大多公司的要求都是至少要本科毕业的,不得不说,当今社会本科基本上已经成为找工作的最低要求了(能力特别强的除外)。

工作年限

work_year_value_counts = data['workYear'].value_counts()
work_year = list(work_year_value_counts.index)
work_year_counts = list(work_year_value_counts) bar = (
Bar()
.add_xaxis(work_year)
.add_yaxis("", work_year_counts) ) bar.render_notebook()

3-5年的中级工程师需求最多,其次是 1-3 年的初级工程师。

其实这也是符合市场规律的,这是因为高级工程师换工作频率远远低于初中级,且一个公司对高级工程师的需求量是远远低于初中级工程师的。

行业

我们再来看看这些招聘方都属于哪些行业。因为行业数据不是非常规整,所以需要单独对每一条记录按照 , 作下切割。

industrys = list(data['industryField'])
industry_list = [i for item in industrys for i in item.split(',') ] industry_series = pd.Series(data=industry_list) industry_value_counts = industry_series.value_counts() industrys = list(industry_value_counts.head(top).index) industry_counts = list(industry_value_counts.head(top)) pie = ( Pie() .add("", [list(z) for z in zip(industrys, industry_counts)]) .set_global_opts(title_opts=opts.TitleOpts(title="")) .set_global_opts(legend_opts=opts.LegendOpts(is_show=False)) ) pie.render_notebook()

移动互联网行业占据了四分之一还多的需求量,这跟我们的认识的大环境是相符合的。

技能要求

来看看招聘方所需的技能要求词云。

word_data = data['skillLables'].str.split(',').apply(pd.Series)
word_data = word_data.replace(np.nan, '')
text = word_data.to_string(header=False, index=False) wc = WordCloud(font_path='/System/Library/Fonts/PingFang.ttc', background_color="white", scale=2.5, contour_color="lightblue", ).generate(text) wordcloud = WordCloud(background_color='white', scale=1.5).generate(text) plt.figure(figsize=(16, 9)) plt.imshow(wc) plt.axis('off') plt.show()

除去 Python,出现最多的是后端、MySQL、爬虫、全栈、算法等。

薪资

接下来我们看看各大公司给出的薪资条件。

salary_value_counts = data['salary'].value_counts()
top = 15
salary = list(salary_value_counts.head(top).index)
salary_counts = list(salary_value_counts.head(top)) bar = ( Bar() .add_xaxis(salary) .add_yaxis("", salary_counts) .set_global_opts(xaxis_opts=opts.AxisOpts(name_rotate=0,name="薪资",axislabel_opts={"rotate":45})) ) bar.render_notebook()

大部分公司给出的薪资还是很可观的,基本都在 15K-35K 之间,只要你技术过关,很难找不到满意薪酬的工作。

福利

最后咱来看看公司给出的额外福利都有哪些。

word_data = data['companyLabelList'].str.split(',').apply(pd.Series)
word_data = word_data.replace(np.nan, '')
text = word_data.to_string(header=False, index=False) wc = WordCloud(font_path='/System/Library/Fonts/PingFang.ttc', background_color="white", scale=2.5, contour_color="lightblue", ).generate(text) plt.figure(figsize=(16, 9)) plt.imshow(wc) plt.axis('off') plt.show()

年底双薪、绩效奖金、扁平化管理,都是大家所熟知的福利。其中扁平化管理是互联网公司的特色,不像国企或者其他实体企业,上下级观念比较重。

总结

今天我们抓取了拉勾网 1300+ 条关于 Python 的招聘数据,对这批数据分析之后我们得出如下结论:

关于学历你最好是本科毕业,市场对 1-5 年工作经验的工程师需求量比较大,需求量最大的城市是北上深杭,需求量最多的行业仍然是移动互联网,而且大多数公司都可以给到不错的薪酬待遇。

通过对这 1300+ 条招聘数据的分析,相信你会更了解现在的就业市场情况,做到知己知彼,才能增加自己在未来工作中的胜算。

自学 Python 到什么程度能找到工作,1300+ 条招聘信息告诉你答案的更多相关文章

  1. 学习Python 能找到工作?1300+条招聘信息告诉你答案

    对于python这块有任何不懂的问题可以随时来问我,我对于学习方法,系统学习规划,还有学习效率这些知道一些,希望可以帮助大家少走弯路.当然也会送给大家一份系统性的python资料,文末附有爬虫项目实战 ...

  2. 从零开始学数据分析,什么程度可以找到工作?( 内附20G、5000分钟数据分析工具教程大合集 )

    从零开始学数据分析,什么程度可以找到工作?( 内附20G.5000分钟数据分析工具教程大合集 )   我现在在Coursera上面学data science 中的R programming,过去很少接 ...

  3. 自学java,如何快速地找到工作

    本人最近一直在帮零基础的java开发者提升能力和找工作,在这个过程中,发现零基础的java程序员,在自学和找工作时,普遍会出现一些问题,同时在实践过程中,也总结出了一些能帮零基础java开发尽快提升能 ...

  4. 自学Python编程的第六天(最后代码有更好的请告诉我)----------来自苦逼的转行人

    2019-09-16-23:09:06 自学Python的第六天,也是写博客的第六天 今天学的内容是有关dict字典的用法 看视频加上练习,目前还没遇到有难点,但是感觉很不好的样子 没有难点以后突然出 ...

  5. Python网络爬虫案例(二)——爬取招聘信息网站

    利用Python,爬取 51job 上面有关于 IT行业 的招聘信息 版权声明:未经博主授权,内容严禁分享转载 案例代码: # __author : "J" # date : 20 ...

  6. Python爬取十四万条书籍信息告诉你哪本网络小说更好看

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: TM0831 PS:如有需要Python学习资料的小伙伴可以加点击 ...

  7. 开发记录_自学Python写爬虫程序爬取csdn个人博客信息

    每天刷开csdn的博客,看到一整个页面,其实对我而言,我只想看看访问量有没有上涨而已... 于是萌生了一个想法: 想写一个爬虫程序把csdn博客上边的访问量和评论数都爬下来. 打算通过网络各种搜集资料 ...

  8. 拉勾网爬取全国python职位并数据分析薪资,工作经验,学历等信息

    首先前往拉勾网“爬虫”职位相关页面 确定网页的加载方式是JavaScript加载 通过谷歌浏览器开发者工具分析和寻找网页的真实请求,确定真实数据在position.Ajax开头的链接里,请求方式是PO ...

  9. Python 招聘信息爬取及可视化

    自学python的大四狗发现校招招python的屈指可数,全是C++.Java.PHP,但看了下社招岗位还是有的.于是为了更加确定有多少可能找到工作,就用python写了个爬虫爬取招聘信息,数据处理, ...

随机推荐

  1. 工业4.0:换热站最酷设计—— Web SCADA 工业组态软件界面

    前言 随着工业4.0的不断普及与发展,以及国民经济的飞速前进,我国的城市集中供热规模也不断扩大,科学的管理热力管网具有非常重大的经济和社会效益.目前热力系统,如换热站大都采用人工监控,人工监控不仅浪费 ...

  2. Maximum Subsequence Sum(java)

    7-1 Maximum Subsequence Sum(25 分) Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A con ...

  3. py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : java.lang.IllegalArgumentException: Unsupported class file major version 55

    今天小编用Python编写Spark程序报了如下异常: py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apach ...

  4. 苹果XR手机的音频体验测试总结

    苹果XR手机的音频   苹果XR算是苹果手机历史上一个里程碑的型号了,是苹果憋了两年的大招,连苹果9的称号就不要了.直接是X.说明苹果对它给予的希望很大.作为一个音频算法工程师,一直想体验一下XR的音 ...

  5. 自定义Springboot全局异常类

    一.简要说明 如何实现网上文章基本是随便一搜就可以很快找到, 这里不再赘述. 二.Spring-web和Spring-webmvc 通过idea查看到两个注解位于 spring-web-5.2.2.R ...

  6. MFC文档视图中窗口切换 (2012-05-11 18:32:48)

    在文档试图应用程序,有时需要在工作区切换试图,以下就是如何切换试图了 .创建要切换的视图类,同时把构造函数,Create函数改变为public .在需要切换试图的动作响应中,加入切换代码,一般是在CM ...

  7. Javascript中的"函数是第一类对象(first-class object)"

    本身这句话很好解释,函数有两个主要特点,援引自 陈新 译的<JavaScript模式>: 1.函数是第一类对象: 函数可以在运行时动态创建,还可以在程序执行过程中创建. 函数可以分配变量, ...

  8. Python分析最近大火的网剧《隐秘的角落》,看看网友们有什么看法

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 估计最近很火的连续剧<隐秘的角落>大家趁着端午假期都看过了吧? ...

  9. 运行python出现 SyntaxError: Non-ASCII character '\xe6' in file /Users/finup/Documents/python_project/test.py 解决办法

    使用pycharm运行程序时出现以下错误 这个错误主要是由于python2的编码默认是ASCII,你的文件里有中文就必须要用utf-8编码,只要在文件需要在文件开头标注 #coding=utf-8如下 ...

  10. 113资讯网——NGINX 502 Bad Gateway——解决方案

    NGINX 502 Bad Gateway错误出现的原因较多,对于后端连接PHP服务的场景下,常见的原因有php服务响应超时,php进程不足等引起的一类服务器错误. 发生原因: PHP FastCGI ...