POJ 1236 Network of Schools(强连通 Tarjan+缩点)

ACM

题目地址:POJ 1236

题意: 

给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得有向图成为一个强连通图。

分析: 

HDU 2767 Proving Equivalences题解)一样的题目,只是多了个问题,事实上转化成DAG后就不难考虑了,事实上仅仅要选择入度为0的点即可了。

代码:

/*
* Author: illuz <iilluzen[at]gmail.com>
* File: 1236.cpp
* Create Date: 2014-07-30 15:13:12
* Descripton: Tarjan
*/ #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#include <vector>
#include <stack>
#define repf(i,a,b) for(int i=(a);i<=(b);i++)
typedef long long ll; const int N = 105; vector<int> G[N];
stack<int> S;
int low[N], dfn[N], sccno[N], tclock, scccnt;
int id[N], od[N];
int n, rd; void tarjan(int u) {
low[u] = dfn[u] = ++tclock;
S.push(u); int sz = G[u].size();
repf (i, 0, sz - 1) {
int v = G[u][i];
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (!sccno[v]) {
low[u] = min(low[u], dfn[v]);
}
} if (low[u] == dfn[u]) {
scccnt++;
int v = -1;
while (v != u) {
v = S.top();
S.pop();
sccno[v] = scccnt;
}
}
} void read() {
repf (i, 1, n) {
G[i].clear();
while (scanf("%d", &rd) && rd) {
G[i].push_back(rd);
}
}
} void find_scc() {
tclock = scccnt = 0;
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(sccno, 0, sizeof(sccno)); repf (i, 1, n) {
if (!dfn[i]) {
tarjan(i);
}
}
} void solve() {
if (scccnt == 1) {
printf("1\n0\n");
return;
} memset(id, 0, sizeof(id));
memset(od, 0, sizeof(od)); repf (u, 1, n) {
int sz = G[u].size();
repf (i, 0, sz - 1) {
int v = G[u][i];
if (sccno[u] != sccno[v]) {
id[sccno[v]]++;
od[sccno[u]]++;
}
}
} int idnum = 0, odnum = 0;
repf (i, 1, scccnt) {
idnum += (id[i] == 0);
odnum += (od[i] == 0);
} printf("%d\n%d\n", idnum, max(idnum, odnum));
} int main() {
while (~scanf("%d", &n)) {
read();
find_scc();
solve();
}
return 0;
}

POJ 1236 Network of Schools(强连通 Tarjan+缩点)的更多相关文章

  1. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  2. poj 1236 Network of Schools(tarjan+缩点)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  3. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  4. POJ 1236 Network of Schools (强连通分量缩点求度数)

    题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...

  5. POJ 1236 Network of Schools (Tarjan)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22745   Accepted: 89 ...

  6. POJ 1236 Network of Schools(tarjan)

    Network of Schools Description A number of schools are connected to a computer network. Agreements h ...

  7. POJ 1236 Network of Schools(tarjan)题解

    题意:一个有向图.第一问:最少给几个点信息能让所有点都收到信息.第二问:最少加几个边能实现在任意点放信息就能传遍所有点 思路:把所有强连通分量缩成一点,然后判断各个点的入度和出度 tarjan算法:问 ...

  8. POJ 1236 Network of Schools(tarjan求强连通分量+思维)

    题目链接:http://poj.org/problem?id=1236 题目大意: 给你一个网络(有向图),有两个任务: ①求出至少同时需要几份副本可以使得整个网络都获得副本 ②至少添加多少信息表(有 ...

  9. POJ 1236 Network of Schools (tarjan算法+缩点)

    思路:使用tarjan求强连通分量并进行缩点,判断所有入度为0的点,这个点就是必须要给予文件的点,分别计算出度,入度为零的点的个数,取二者的最大值就是把这个图变成强连通需要加的边数. 一个取值需要讨论 ...

  10. poj 1236 Network of Schools 【Tarjan】

    题目链接:http://poj.org/problem?id=1236 题意: 本题为有向图. 需解决两个问题: 1 须要给多少个点,才干传遍全部点. 2 加多少条边,使得整个图变得强连通. 使用Ta ...

随机推荐

  1. ExtJS 4.2学习(一)——环境搭建

    1.把JDK集成到myeclipse里: 虽然myeclipse自带了jdk,但我们还是配置自己的JDK1.7 window——>Proferences——>Java——>Compl ...

  2. 星际SC 地图 Big Game Fort 要塞之战 修正了 BIG GAME 地图的平衡性

    星际SC 地图 Big Game Fort 要塞之战 修正了 BIG GAME 地图的平衡性 也适合BIG 1V1 对战 此版本目前不开放1打1造功能

  3. codeforces 603C. Lieges of Legendre sg函数

    题目链接 n堆石子, 可以拿走一堆中的一颗, 或者将一堆数量为2*x的石子分为k堆x个的石子.k由题目给出. k分奇偶讨论. k为偶数时,k堆x个的石子异或结果为0: k为奇数时, k堆x个石子异或结 ...

  4. poj 1949 Chores 最长路

    题目链接 求出最长路..... #include <iostream> #include <vector> #include <cstdio> #include & ...

  5. uva 10779 Collectors Problem 网络流

    链接 一共有n个人, m种收藏品, 每个人拥有的收藏品的种类和个数都是不相同的. 假设2-n这些人都只和1互相交换, 比例是1:1, 并且, 2-n这些人, 只换自己现在没有的, 如果他现在有第二种, ...

  6. Category、Extension

    Category,分类,类目.主要作⽤用是为没有源代码的添加方法,例系统自带的NSString. 通过Category添加的方法会成为原类的一部分.从⽽而达到扩展一 个类的功能.   Category ...

  7. JavaScript 反柯里化

    浅析 JavaScript 中的 函数 uncurrying 反柯里化 柯里化 柯里化又称部分求值,其含义是给函数分步传递参数,每次传递参数后部分应用参数,并返回一个更具体的函数接受剩下的参数,这中间 ...

  8. HTML编码的用户输入

    public string Browse(string genre) { returen HttpUtility.HtmlEncode(genre); } HttpUtility.HtmlEncode ...

  9. 【玩转Ubuntu】08. Linux报错:Syntax error: "(" unexpected解决办法

    问题: 在MAC上写了一段shell脚本,放到Ubuntu上运行总是报下面这个错误,单步调试都是对的,就是直接运行会报错. bixiaopeng@ubuntu:~/package$ sh packag ...

  10. Microsoft Azure 上的自定义数据和 Cloud-Init

     自定义数据是什么? 客户经常询问如何才能在配置Microsoft Azure 虚拟机时插入脚本或其他元数据.在其他云中,这个概念通常称为用户数据.MicrosoftAzure 中也有一项类似的功 ...