Largest Rectangle in a Histogram

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15189    Accepted Submission(s): 4408

Problem Description
A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:

Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.
 
Input
The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1 <= n <= 100000. Then follow n integers h1, ..., hn, where 0 <= hi <= 1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.
 
Output
For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.
 
Sample Input
7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0
 
Sample Output
8
4000
求出每个矩形最左可延伸点和最右可延伸点,这里用到了迭代寻找最远点,普通的寻找会超时。然后计算每个矩形的所能扩展的面积。
 #include <stdio.h>
#define Max 100005
__int64 dpl[Max],dpr[Max],h[Max];
int main()
{
__int64 n,k,m;
int i,j;
freopen("in.txt","r",stdin);
while(scanf("%I64d",&n)!=EOF)
{
if(n==)
break;
m=;
for(i=;i<=n;i++)
{
scanf("%I64d",&h[i]);
dpr[i]=dpl[i]=i;
}
h[n+]=h[]=;
for(i=n;i>=;i--)
{
while(h[dpr[i]+]>=h[i])
dpr[i]=dpr[dpr[i]+];
}
for(i=;i<=n;i++)
{
while(h[dpl[i]-]>=h[i])
dpl[i]=dpl[dpl[i]-];
}
for(i=;i<=n;i++)
{
k=(dpr[i]-dpl[i]+)*h[i];
if(m<k) m=k;
}
printf("%I64d\n",m);
}
return ;
}

Largest Rectangle in a Histogram(HDU 1506 动态规划)的更多相关文章

  1. Largest Rectangle in a Histogram HDU - 1506 (单调栈)

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rec ...

  2. Day8 - C - Largest Rectangle in a Histogram HDU - 1506

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rec ...

  3. V - Largest Rectangle in a Histogram HDU - 1506

    两种思路: 1 单调栈:维护一个单调非递减栈,当栈为空或者当前元素大于等于栈顶元素时就入栈,当前元素小于栈顶元素时就出栈,出栈的同时计算当前值,当前值所包含的区间范围为从当前栈顶元素到当前元素i的距离 ...

  4. HDU 1506 Largest Rectangle in a Histogram (dp左右处理边界的矩形问题)

    E - Largest Rectangle in a Histogram Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  5. HDU 1506 Largest Rectangle in a Histogram set+二分

    Largest Rectangle in a Histogram Problem Description: A histogram is a polygon composed of a sequenc ...

  6. hdu 1506 Largest Rectangle in a Histogram 构造

    题目链接:HDU - 1506 A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  7. HDU——T 1506 Largest Rectangle in a Histogram|| POJ——T 2559 Largest Rectangle in a Histogram

    http://acm.hdu.edu.cn/showproblem.php?pid=1506  || http://poj.org/problem?id=2559 Time Limit: 2000/1 ...

  8. HDU 1506 Largest Rectangle in a Histogram(区间DP)

    题目网址:http://acm.hdu.edu.cn/showproblem.php?pid=1506 题目: Largest Rectangle in a Histogram Time Limit: ...

  9. HDU 1506 Largest Rectangle in a Histogram(DP)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. z-index 所遇问题

    document.getElementById('wx_share_img').style.cssText = "width:100%;height:100%;position:fixed; ...

  2. android 数据存储的几种方式

    总体的来讲,数据存储方式有三种:一个是文件,一个是数据库,另一个则是网络.其中文件和数据库可能用的稍多一些,文件用起来较为方便,程序可以自己定义格式:数据库用起稍烦锁一些,但它有它的优点,比如在海量数 ...

  3. android and javascript

    layout-------->HTML activity-------->JavaScript R资源管理者----------->layout, string, styles, c ...

  4. cf C. Prime Number

    http://codeforces.com/contest/359/problem/C 先求出分子的公因子,然后根据分子上会除以公因子会长生1,然后记录1的个数就可以. #include <cs ...

  5. 为什么Linux不需要碎片整理?

    如果你是一个 Linux 用户,你可能会听说 Linux 的文件系统不需要碎片整理.你也可能会注意到 Linux 的发行版本也都没有磁盘碎片整理的功能.这是为什么呢? 要理解为什么 Linux 的文件 ...

  6. bzoj3174 [Tjoi2013]拯救小矮人

    Description 一群小矮人掉进了一个很深的陷阱里,由于太矮爬不上来,于是他们决定搭一个人梯.即:一个小矮人站在另一小矮人的 肩膀上,知道最顶端的小矮人伸直胳膊可以碰到陷阱口.对于每一个小矮人, ...

  7. tyvj1185营业额统计

    描述 Description 营业额统计  Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况.  Tiger拿出了公司的账本,账本上记录了公司 ...

  8. 解决selenium 启动ie浏览器报错:Unexpected error launching Internet Explorer. Protected Mode settings are not the same for all zones

    启动ie代码: System.setProperty("webdriver.ie.driver", "bin/IEDriverServer.exe"); Web ...

  9. 探讨socket引发SIGPIPE信号的问题

    我写socket相关的程序也不是一天两天了,在我的记忆中,只要处理好recv(或read)的返回值中<0,==0,>0三种情况,程序便不会有什么问题.但最近在看公司的源代码时,发现代码中直 ...

  10. PHP本地域名解析教程

    1.找到C:\WINDOWS\system32\drivers\etc\hosts 127.0.0.1       localhost 127.0.0.1       www.zhosoft.com ...