题意

给一个\(n\)个点带边权的树。有\(m\)次操作,每一次操作一个点\(x\),如果\(x\)已经出现,则\(x\)消失。否则\(x\)出现。每一操作后,询问从某个点开始走,直到经过所有出现的点,最后再回到开始的那个点的最短路程。

分析

首先容易知道我们选任意一个在某两点路径上的点作为起点都能得到最优解(包括端点)。我们只需要考虑走的顺序。

题解

由于按照dfs序的走法是最短的,因此我们按dfs序维护一下前前后后的距离和即可。如何证明?好像并不会...

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100005;
int n, ihead[N], FF[N], dep[N], cnt, a[N], fa[N][17], m;
ll d[N];
struct E {
int next, to, w;
}e[N<<1];
struct dat {
int FF, id;
ll dis;
bool operator < (const dat &a) const {
return FF<a.FF;
}
};
set<dat> s;
void add(int x, int y, int w) {
e[++cnt]=(E){ihead[x], y, w}; ihead[x]=cnt;
e[++cnt]=(E){ihead[y], x, w}; ihead[y]=cnt;
}
void dfs(int x, int f=0) {
static int fid=0;
FF[x]=++fid;
for(int i=1; i<=16; ++i) {
fa[x][i]=fa[fa[x][i-1]][i-1];
}
for(int i=ihead[x]; i; i=e[i].next) {
int y=e[i].to;
if(y==f) {
continue;
}
fa[y][0]=x;
dep[y]=dep[x]+1;
d[y]=d[x]+e[i].w;
dfs(y, x);
}
}
int LCA(int x, int y) {
if(dep[x]<dep[y]) {
swap(x, y);
}
int d=dep[x]-dep[y];
for(int i=16; i>=0; --i) if((d>>i)&1) x=fa[x][i];
if(x==y) return x;
for(int i=16; i>=0; --i) if(fa[x][i]!=fa[y][i]) x=fa[x][i], y=fa[y][i];
return fa[x][0];
}
ll getdis(int x, int y) {
int lca=LCA(x, y);
return d[x]+d[y]-(d[lca]<<1);
}
int main() {
scanf("%d%d", &n, &m);
for(int i=1; i<n; ++i) {
int x, y, w;
scanf("%d%d%d", &x, &y, &w);
add(x, y, w);
}
dfs((n+1)>>1);
ll ans=0;
while(m--) {
int p;
scanf("%d", &p);
dat t;
if(a[p]) {
set<dat>::iterator it=s.lower_bound((dat){FF[p], 0, 0}), itp=s.end(), itb=s.end();
itb=it;
++itb;
ans-=it->dis;
if(it!=s.begin()) {
itp=it;
--itp;
}
if(itb!=s.end()) {
ans-=itb->dis;
if(itp==s.end()) {
t=*itb;
t.dis=0;
s.erase(itb);
s.insert(t);
}
else {
t=*itb;
t.dis=getdis(itb->id, itp->id);
ans+=t.dis;
s.erase(itb);
s.insert(t);
}
}
s.erase(it);
a[p]=0;
}
else {
set<dat>::iterator it=s.lower_bound((dat){FF[p], 0, 0}), itp=s.end();
if(it!=s.begin()) {
itp=it;
--itp;
}
if(it!=s.end()) {
if(itp!=s.end()) {
ll dis=getdis(p, itp->id);
s.insert((dat){FF[p], p, dis});
ans+=dis;
}
else {
s.insert((dat){FF[p], p, 0});
}
t=*it;
ans-=t.dis;
t.dis=getdis(p, it->id);
ans+=t.dis;
s.erase(it);
s.insert(t);
}
else {
if(itp==s.end()) {
s.insert((dat){FF[p], p, 0});
}
else {
ll dis=getdis(p, itp->id);
s.insert((dat){FF[p], p, dis});
ans+=dis;
}
}
a[p]=1;
}
ll temp=0;
if(s.size()>=2) {
set<dat>::iterator it=s.end();
--it;
temp=getdis(s.begin()->id, it->id);
}
printf("%lld\n", ans+temp);
}
return 0;
}

【BZOJ】3991: [SDOI2015]寻宝游戏的更多相关文章

  1. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  2. 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  3. bzoj 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  4. BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  5. [BZOJ 3991][SDOI2015]寻宝游戏(dfs序)

    题面 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路 ...

  6. BZOJ 3991: [SDOI2015]寻宝游戏 [虚树 树链的并 set]

    传送门 题意: $n$个点的树,$m$次变动使得某个点有宝物或没宝物,询问每次变动后集齐所有宝物并返回原点的最小距离 转化成有根树,求树链的并... 两两树链求并就可以,但我们按照$dfs$序来两两求 ...

  7. BZOJ.3991.[SDOI2015]寻宝游戏(思路 set)

    题目链接 从哪个点出发最短路径都是一样的(最后都要回来). 脑补一下,最短路应该是按照DFS的顺序,依次访问.回溯遍历所有点,然后再回到起点. 即按DFS序排序后,Ans=dis(p1,p2)+dis ...

  8. 3991: [SDOI2015]寻宝游戏

    3991: [SDOI2015]寻宝游戏 https://www.lydsy.com/JudgeOnline/problem.php?id=3991 分析: 虚树+set. 要求树上许多点之间的路径的 ...

  9. 【BZOJ】3991: [SDOI2015]寻宝游戏 虚树+DFS序+set

    [题意]给定n个点的带边权树,对于树上存在的若干特殊点,要求任选一个点开始将所有特殊点走遍后返回.现在初始没有特殊点,m次操作每次增加或减少一个特殊点,求每次操作后的总代价.n,m<=10^5. ...

随机推荐

  1. Extjs 学习总结-代理

    代理(proxy)是用来加载和存取Model 数据的.开发中一般配合Store完成工作,不会直接操作代理. 代理分为两大类: 客户端代理 服务器代理 客户端代理主要完成与浏览器本地存储数据相关的工作. ...

  2. AngularJS常用插件与指令收集

    angularjs 组件列表 bindonce UI-Router Angular Tree angular-ngSanitize模块-$sanitize服务详解 使用 AngularJS 开发一个大 ...

  3. 【Bootstrap】Bootstrap-select多选下拉框实现

    目录 前言 需要引用的它们 核心选项 核心方法 实例应用 回到顶部 前言 项目中要实现多选,就想到用插件,选择了bootstrap-select. 附上官网api链接,http://silviomor ...

  4. DTD总结

    DTD 可以检测 XNM 文档的结构是否正确,就好像文章中用来保证结构正确的语法规则一样. 引入 DTD 1.引入私有的 DTD 文件,URI 可以使相对地址或绝对地址 <!DOCTYPE 根元 ...

  5. Apache限制某个目录下的PHP文件没有执行权限

    为了安全期间,有时我们需要限制网站下的某些目录对于php脚本不能执行. 有两种方法可以参考: 1.  使用.htaccess 文件限制 在要限制php执行的目录下,创建.htaccess文件,加入内容 ...

  6. jquery 页面加载时获取图片高度

    $(function () { $(window).load(function(){ alert($('img').height()); }); });

  7. StartUML2.8破解

    StarUML官方下载地址:http://staruml.io/download StarUML是一个非常好用的画UML图的工具,但是它是收费软件​,以下是破解方法: ​1.使用Editplus或者N ...

  8. windows系统和ubuntu虚拟机之间文件共享——samba

    参考:http://www.cnblogs.com/phinecos/archive/2009/06/06/1497717.html 一. samba的安装: sudo apt-get insall  ...

  9. codeigniter钩子的使用

    CodeIgniter 的钩子功能,使得我们可以在不修改系统核心文件的基础上,来改变或增加系统的核心运行功能.可是钩子究竟该怎么用呢?虽然不是很难,不过很多刚用ci的朋友可能还是不明白怎么用. 通过本 ...

  10. springMVC学习之接受JSON参数

    今天在springmvc使用rest模式异步提交,后台接受json字符.发现好多问题,感觉和spring3.0使用习惯上多少有点区别.因此把4.0的异步提交和方式记录下来. 前台页面代码如下: < ...