题意

给一个\(n\)个点带边权的树。有\(m\)次操作,每一次操作一个点\(x\),如果\(x\)已经出现,则\(x\)消失。否则\(x\)出现。每一操作后,询问从某个点开始走,直到经过所有出现的点,最后再回到开始的那个点的最短路程。

分析

首先容易知道我们选任意一个在某两点路径上的点作为起点都能得到最优解(包括端点)。我们只需要考虑走的顺序。

题解

由于按照dfs序的走法是最短的,因此我们按dfs序维护一下前前后后的距离和即可。如何证明?好像并不会...

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=100005;
int n, ihead[N], FF[N], dep[N], cnt, a[N], fa[N][17], m;
ll d[N];
struct E {
int next, to, w;
}e[N<<1];
struct dat {
int FF, id;
ll dis;
bool operator < (const dat &a) const {
return FF<a.FF;
}
};
set<dat> s;
void add(int x, int y, int w) {
e[++cnt]=(E){ihead[x], y, w}; ihead[x]=cnt;
e[++cnt]=(E){ihead[y], x, w}; ihead[y]=cnt;
}
void dfs(int x, int f=0) {
static int fid=0;
FF[x]=++fid;
for(int i=1; i<=16; ++i) {
fa[x][i]=fa[fa[x][i-1]][i-1];
}
for(int i=ihead[x]; i; i=e[i].next) {
int y=e[i].to;
if(y==f) {
continue;
}
fa[y][0]=x;
dep[y]=dep[x]+1;
d[y]=d[x]+e[i].w;
dfs(y, x);
}
}
int LCA(int x, int y) {
if(dep[x]<dep[y]) {
swap(x, y);
}
int d=dep[x]-dep[y];
for(int i=16; i>=0; --i) if((d>>i)&1) x=fa[x][i];
if(x==y) return x;
for(int i=16; i>=0; --i) if(fa[x][i]!=fa[y][i]) x=fa[x][i], y=fa[y][i];
return fa[x][0];
}
ll getdis(int x, int y) {
int lca=LCA(x, y);
return d[x]+d[y]-(d[lca]<<1);
}
int main() {
scanf("%d%d", &n, &m);
for(int i=1; i<n; ++i) {
int x, y, w;
scanf("%d%d%d", &x, &y, &w);
add(x, y, w);
}
dfs((n+1)>>1);
ll ans=0;
while(m--) {
int p;
scanf("%d", &p);
dat t;
if(a[p]) {
set<dat>::iterator it=s.lower_bound((dat){FF[p], 0, 0}), itp=s.end(), itb=s.end();
itb=it;
++itb;
ans-=it->dis;
if(it!=s.begin()) {
itp=it;
--itp;
}
if(itb!=s.end()) {
ans-=itb->dis;
if(itp==s.end()) {
t=*itb;
t.dis=0;
s.erase(itb);
s.insert(t);
}
else {
t=*itb;
t.dis=getdis(itb->id, itp->id);
ans+=t.dis;
s.erase(itb);
s.insert(t);
}
}
s.erase(it);
a[p]=0;
}
else {
set<dat>::iterator it=s.lower_bound((dat){FF[p], 0, 0}), itp=s.end();
if(it!=s.begin()) {
itp=it;
--itp;
}
if(it!=s.end()) {
if(itp!=s.end()) {
ll dis=getdis(p, itp->id);
s.insert((dat){FF[p], p, dis});
ans+=dis;
}
else {
s.insert((dat){FF[p], p, 0});
}
t=*it;
ans-=t.dis;
t.dis=getdis(p, it->id);
ans+=t.dis;
s.erase(it);
s.insert(t);
}
else {
if(itp==s.end()) {
s.insert((dat){FF[p], p, 0});
}
else {
ll dis=getdis(p, itp->id);
s.insert((dat){FF[p], p, dis});
ans+=dis;
}
}
a[p]=1;
}
ll temp=0;
if(s.size()>=2) {
set<dat>::iterator it=s.end();
--it;
temp=getdis(s.begin()->id, it->id);
}
printf("%lld\n", ans+temp);
}
return 0;
}

【BZOJ】3991: [SDOI2015]寻宝游戏的更多相关文章

  1. bzoj 3991: [SDOI2015]寻宝游戏 虚树 set

    目录 题目链接 题解 代码 题目链接 bzoj 3991: [SDOI2015]寻宝游戏 题解 发现每次答案就是把虚树上的路径*2 接在同一关键点上的点的dfs序是相邻的 那么用set动态维护dfs序 ...

  2. 树形结构的维护:BZOJ 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  3. bzoj 3991: [SDOI2015]寻宝游戏

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  4. BZOJ 3991: [SDOI2015]寻宝游戏 树链的并+set

    Description 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可 ...

  5. [BZOJ 3991][SDOI2015]寻宝游戏(dfs序)

    题面 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达.游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路 ...

  6. BZOJ 3991: [SDOI2015]寻宝游戏 [虚树 树链的并 set]

    传送门 题意: $n$个点的树,$m$次变动使得某个点有宝物或没宝物,询问每次变动后集齐所有宝物并返回原点的最小距离 转化成有根树,求树链的并... 两两树链求并就可以,但我们按照$dfs$序来两两求 ...

  7. BZOJ.3991.[SDOI2015]寻宝游戏(思路 set)

    题目链接 从哪个点出发最短路径都是一样的(最后都要回来). 脑补一下,最短路应该是按照DFS的顺序,依次访问.回溯遍历所有点,然后再回到起点. 即按DFS序排序后,Ans=dis(p1,p2)+dis ...

  8. 3991: [SDOI2015]寻宝游戏

    3991: [SDOI2015]寻宝游戏 https://www.lydsy.com/JudgeOnline/problem.php?id=3991 分析: 虚树+set. 要求树上许多点之间的路径的 ...

  9. 【BZOJ】3991: [SDOI2015]寻宝游戏 虚树+DFS序+set

    [题意]给定n个点的带边权树,对于树上存在的若干特殊点,要求任选一个点开始将所有特殊点走遍后返回.现在初始没有特殊点,m次操作每次增加或减少一个特殊点,求每次操作后的总代价.n,m<=10^5. ...

随机推荐

  1. [Unity3D]引擎学习之注意事项(持续更新中)

    调试相关 如果是想在触发粒子系统效果的时候播放声音(比如爆炸的特殊发生时也播放声音),则需要将爆炸效果的粒子系统保持为Prefab后,添加Audio Source组件,在组件中添加声音文件并且确保pl ...

  2. 使用count结合nvl函数时碰到的问题

    count()函数功能:统计表中中某个字段或所有记录个数,字段值为null的不做统计. 手册中解释: COUNT returns the number of rows returned by the ...

  3. 2015.4.24 移动端,chrome不兼容或无法运行的一些具体问题

    1.table内input,把它的边框和focus边框都变成透明,在ff可行,但是chrome会有样式,怎么解决? 解决方法:border:none;outline:0; 2.如下代码,css3动画在 ...

  4. tyvj1148 小船弯弯

    描述 童年的我们,充满了新奇的想法.这天,小朋友们用彩虹画笔在云霞上绘制了世界上最美丽的图画.那描绘的是一条大河波浪宽,风吹稻花香两岸的情景.欣赏着自己的作品,小朋友们别提多开心了.这时,Q小朋友对C ...

  5. R语言学习笔记-机器学习1-3章

    在折腾完爬虫还有一些感兴趣的内容后,我最近在看用R语言进行简单机器学习的知识,主要参考了<机器学习-实用案例解析>这本书. 这本书是目前市面少有的,纯粹以R语言为基础讲解的机器学习知识,书 ...

  6. 在JS中关于堆与栈的认识function abc(a){ a=100; } function abc2(arr){ arr[0]=0; }

    平常我们的印象中堆与栈就是两种数据结构,栈就是先进后出:堆就是先进先出.下面我就常见的例子做分析: main.cpp int a = 0; 全局初始化区 char *p1; 全局未初始化区 main( ...

  7. ajax请求webservice的过程中遇到的问题总结

    前台用ajax的post方法,无法请求到webservice中的方法的时候,需要在配置文件中添加 web.config文件中的 <system.web> 节点下加入:<webServ ...

  8. Asp.Net Core--自定义基于策略的授权

    翻译如下: 在封面下,角色授权和声明授权使用需求,需求的处理程序和预配置的策略. 这些构建块允许您在代码中表示授权评估,从而允许更丰富,可重用和容易测试的授权结构. 授权策略由一个或多个需求组成,并在 ...

  9. php-css外边距

    css 基本语法  selector{declaration1;declaration2;....delecrationN;} (选择器和一条或多条声明)  选择器为需要改变样式的html元素,每条声 ...

  10. 【Spring实战】—— 12 AspectJ报错:error at ::0 can't find referenced pointcut XXX

    今天在使用AspectJ进行注解切面时,遇到了一个错误. 切点表达式就是无法识别——详细报错信息如下: Exception can't find referenced pointcut perform ...