洛谷P5162 WD与积木 [DP,NTT]
思路
真是非常套路的一道题……
考虑\(DP\):设\(f_n\)为\(n\)个积木能搭出的方案数,\(g_n\)为所有方案的高度之和。
容易得到转移方程:
&f_n=[n=0]+\sum_{i=1}^n {n \choose i} f_{n-i}\\
&g_n=\sum_{i=1}^n {n \choose i} (f_{n-i}+g_{n-i})
\end{align*}
\]
发现\(f_n\)似乎更容易搞出来,我们先搞\(f_n\)。
由转移方程可以得到:
\]
设
S(x)=\sum_{n=1}^{\infty} \frac{1}{n!} x^n
\]
则有
F(x)-1&=F(x)S(x)\\
F(x)&=\frac{1}{1-S(x)}
\end{align*}
\]
多项式求逆即可。
接下来是求\(g_n\)。
令\(t_n=f_n+g_n\),则有
\]
设
&G(x)=\sum_n \frac{g_n}{n!} x^n\\
&T(x)=\sum_n \frac{t_n}{n!}=F(x)+G(x)
\end{align*}
\]
可以得到
G(x)=\frac{S(x)F(x)}{1-S(x)}=S(x)[F(x)]^2=F(x)(F(x)-1)
\]
NTT即可。
最后\(ans_n=\frac{g_n}{f_n}\)。
代码
#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define sz 400404
typedef long long ll;
const ll mod=998244353;
template<typename T>
inline void read(T& t)
{
t=0;char f=0,ch=getchar();
double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.')
{
ch=getchar();
while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();
}
t=(f?-t:t);
}
template<typename T,typename... Args>
inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
inline ll ksm(ll x,int y)
{
ll ret=1;
for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;
return ret;
}
ll inv(ll x){return ksm(x,mod-2);}
int r[sz],limit;
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int len=mid<<1,j=0;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=w*a[j+k+mid]%mod;
a[j+k]=(x+y)%mod;a[j+k+mid]=(mod+x-y)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
}
ll tmp1[sz],tmp2[sz];
void PolyInv(ll *a,ll *f,int n)
{
if (n==1) return (void)(f[0]=inv(a[0]));
int mid=(n+1)>>1;
PolyInv(a,f,mid);
NTT_init(n);
rep(i,0,mid-1) tmp1[i]=f[i];
rep(i,0,n-1) tmp2[i]=a[i];
NTT(tmp1,1);NTT(tmp2,1);
rep(i,0,limit-1) tmp1[i]=tmp1[i]*(mod+2-tmp1[i]*tmp2[i]%mod)%mod;
NTT(tmp1,-1);
rep(i,0,n-1) f[i]=tmp1[i];
rep(i,0,limit-1) tmp1[i]=tmp2[i]=0;
}
ll fac[sz],_fac[sz];
void init(){fac[0]=_fac[0]=1;rep(i,1,sz-1) _fac[i]=inv(fac[i]=fac[i-1]*i%mod);}
ll f[sz],g[sz],s[sz];
ll t1[sz],t2[sz],t3[sz],t4[sz];
int main()
{
file();
init();
int n=1e5+5,T;
rep(i,1,n) s[i]=mod-_fac[i];
++s[0];
PolyInv(s,t1,n);
rep(i,1,n) f[i]=t1[i];f[0]=1;
rep(i,0,n) t2[i]=t3[i]=f[i];--t3[0];
NTT_init(n);
NTT(t2,1);NTT(t3,1);
rep(i,0,limit-1) t4[i]=t2[i]*t3[i]%mod;
NTT(t4,-1);
rep(i,1,n) g[i]=t4[i];
read(T);
while (T--) read(n),printf("%lld\n",g[n]*inv(f[n])%mod);
}
洛谷P5162 WD与积木 [DP,NTT]的更多相关文章
- 洛谷 P5162 WD与积木 解题报告
P5162 WD与积木 题目背景 WD整日沉浸在积木中,无法自拔-- 题目描述 WD想买\(n\)块积木,商场中每块积木的高度都是\(1\),俯视图为正方形(边长不一定相同).由于一些特殊原因,商家会 ...
- 洛谷 P5162 WD与积木【多项式求逆】
设f[i]为i个积木能堆出来的种类,g[i]为i个积木能堆出来的种类和 \[ f[n]=\sum_{i=1}^{n}C_{n}^{i}g[n-i] \] \[ g[n]=\sum_{i=1}^{n}C ...
- 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)
洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\).我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...
- 洛谷2344 奶牛抗议(DP+BIT+离散化)
洛谷2344 奶牛抗议 本题地址:http://www.luogu.org/problem/show?pid=2344 题目背景 Generic Cow Protests, 2011 Feb 题目描述 ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- 洛谷P1541 乌龟棋(四维DP)
To 洛谷.1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游 ...
- 【洛谷】P1052 过河【DP+路径压缩】
P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...
- 【题解】洛谷P1052 [NOIP2005TG] 过河(DP+离散化)
题目来源:洛谷P1052 思路 一开始觉得是贪心 但是仔细一想不对 是DP 再仔细一看数据不对 有点大 如果直接存下的话 显然会炸 那么就需要考虑离散化 因为一步最大跳10格 那么我们考虑从1到10都 ...
- 洛谷1736(二维dp+预处理)
洛谷1387的进阶版,但很像. 1387要求是“全为1的正方形”,取dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))吧?这个有“只有对 ...
随机推荐
- C#正则表达式匹配
1.匹配所有带括号的字符串 string s = "aaaa(bbb)ccc(ddd)eeee"; string pattern = "\\(\\w+\\)"; ...
- 经典文摘:饿了么的 PWA 升级实践(结合Vue.js)
自 Vue.js 官方推特第一次公开到现在,我们就一直在进行着将饿了么移动端网站升级为 Progressive Web App 的工作.直到近日在 Google I/O 2017 上登台亮相,才终于算 ...
- HACK入别人的游戏制作做MOD的几种技巧
要让某个游戏(程序)加载我们的MOD,目前有想到的有三种方式: 静态注入:静态注入,即我们HACK入游戏的某个dll,然后修改里面的代码,让程序在运行后加载我们的ModDll,比如U3D的游戏可以直接 ...
- Linux或UNIX系统配置检查
1. Linux或UNIX系统配置检查 系统配置的扫描是基于被动式策略进行扫描,主要检测主机上是否存在配置错误或者不符合预定义的安全策略的配置,通常需要管理员权限才能执行的扫描. 在Linux或UNI ...
- Spark思维导图之Spark Core
- git 无法拉取新的远程分支
我们常常会根据远程分支创建本地分支,命令如下 git checkout -b dev origin/dev 上面的命令我是想把远程分支 dev 拉到本地来,但是有时候没有用,提示远程分支不存在,我们需 ...
- Maven 分模块,启动父工程时异常
1.1 运行方式 Maven方式:命令的 方式1:运行父工程.父工程将各个子模块聚合到一起.将ssh-web打war包发布到tomcat 方式2:直接运行web工程 其他方式:传统的, 部署到to ...
- 2016 alictf Timer writeup
Timer-smali逆向 参考文档:http://blog.csdn.net/qq_29343201/article/details/51649962 题目链接: https://pan.baidu ...
- Protobuf学习
https://www.jianshu.com/p/2265f56805fa https://www.ibm.com/developerworks/cn/linux/l-cn-gpb/index.ht ...
- 51nod 1232 完美数
题目思路:数位dp,若这个数能被每位的非0数整除,那么这个数一定可以被每一位数的lcm整除,lcm(1,2,3,4,5,6,7,8,9) = 2520,所以可以通过将这个数对2520取模来压缩空间,取 ...