bzoj 1042
典型的背包+容斥
首先,考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可
接下来,如果有个数的限制,那么我们就要利用一些容斥的思想:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个超过限制-至少3个超过限制+至少4个超过限制
所以我们用2进制数枚举谁超过了限制,然后加入上面的容斥即可
其中:如果第i种硬币的限制为ni,那么如果i要求超过限制,那么至少要用ni+1个,所以i超过限制的方案数为f[s-(ni+1)ci](f[s]为全方案数)
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
using namespace std;
ll dp[100005];
int c[5];
int l[5];
int q;
int cot(int sit)
{
int cnt=0;
if(sit&1)
{
cnt++;
}
if(sit&2)
{
cnt++;
}
if(sit&4)
{
cnt++;
}
if(sit&8)
{
cnt++;
}
return cnt;
}
int main()
{
for(int i=1;i<=4;i++)
{
scanf("%d",&c[i]);
}
dp[0]=1;
for(int j=1;j<=4;j++)
{
for(int i=1;i<=100000;i++)
{
if(i>=c[j])
{
dp[i]+=dp[i-c[j]];
}
}
}
scanf("%d",&q);
while(q--)
{
for(int i=1;i<=4;i++)
{
scanf("%d",&l[i]);
}
int s;
scanf("%d",&s);
ll ans=0;
for(int i=0;i<16;i++)
{
int temp=s;
if(cot(i)&1)
{
for(int j=0;j<4;j++)
{
if((1<<j)&i)
{
temp-=(l[j+1]+1)*c[j+1];
}
}
if(temp<0)
{
continue;
}else
{
ans-=dp[temp];
}
}else
{
for(int j=0;j<4;j++)
{
if((1<<j)&i)
{
temp-=(l[j+1]+1)*c[j+1];
}
}
if(temp<0)
{
continue;
}else
{
ans+=dp[temp];
}
}
}
printf("%lld\n",ans);
}
return 0;
}
bzoj 1042的更多相关文章
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
- BZOJ 1042 硬币购物(完全背包+DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
- bzoj 1042: [HAOI2008]硬币购物 dp+容斥原理
题目链接 1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1706 Solved: 985[Submit][ ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- BZOJ 1042: [HAOI2008]硬币购物 [容斥原理]
1042: [HAOI2008]硬币购物 题意:4种硬币.面值分别为c1,c2,c3,c4.1000次询问每种硬币di个,凑出\(s\le 10^5\)的方案数 完全背包方案数? 询问太多了 看了题解 ...
- ●BZOJ 1042 [HAOI2008]硬币购物
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题解: 容斥原理,dp预处理首先跑个无限物品的背包dp求出dp[i]表示在四种物品都有 ...
- BZOJ 1042: [HAOI2008]硬币购物(容斥原理)
http://www.lydsy.com/JudgeOnline/problem.php?id=1042 题意: 思路: 如果不考虑硬币个数的话,这就是一道完全背包的题目. 直接求的话行不通,于是这里 ...
- BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...
- BZOJ 1042: [HAOI2008]硬币购物 容斥+背包
1042: [HAOI2008]硬币购物 Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请 ...
随机推荐
- rpmlib(PayloadIsLzma) <= 4.4.6-1 is needed【转载】
以下为转载,但是有改动,原作者在一处写错了,将高写成了低,直接差之毫厘,谬之千里. 环境: centos el5 背景: 由于个人比较喜欢用软件的最新版本,在重新安装服务器上的 xdg-open(还有 ...
- Git——如何将本地项目提交至远程仓库
参考文章:http://blog.csdn.net/dadaxiongdebaobao/article/details/52081826 git 将一个本地文件目录提交到远程仓库的步骤 参考文章: ...
- Django学习手册 - ORM 单表数据获取
Django 单表数据的获取: 先建立数据表格 from django.db import models # Create your models here. class userinfo(model ...
- npm 的 --save 和 --save-dev 的区别
--save-dev 是作为开发依赖保存到 packsge.json 中的 devDependencies 中,即在开发环境中用到的依赖,如 webpack.babel 等用于开发打包的依赖,只是在执 ...
- 用例该如何书写?完整示例-QQ登录界面
测试用例(case\测试点):指导软件测试工程师找bug的(思想逻辑的整理) 意义:1:怕忘:2:存档(让新人熟悉:产出):3:回归测试(软件即将上线之前,重新执行测试用例)--确认测试 书写测试用例 ...
- java中的进程与线程及java对象的内存结构【转】
原文地址:http://rainforc.iteye.com/blog/2039501 1.实现线程的三种方式: 使用内核线程实现 内核线程(Kernel Thread, KLT)就是 ...
- [转] 隐马尔可夫(HMM)、前/后向算法、Viterbi算法 再次总结
最近工作需要优化LSTM-CRF经典模型中的维特比解码部分,发现对维特比一直是个模糊概念,没有get到本质,搜了一圈,发现一篇好文,mark 博主不让转载,mark个地址吧: https://blog ...
- P5270 无论怎样神树大人都会删库跑路
题目地址:P5270 无论怎样神树大人都会删库跑路 第一眼看上去是模拟,似乎是 \(O(n)\) 的 水题 信心满满的写完: #include <bits/stdc++.h> using ...
- APACHE - CXF 入门详解
ref: https://www.cnblogs.com/hoojjack/p/6724659.html
- 使用WireMock快速伪造RESTful服务
⒈下载WireMock独立运行程序 http://wiremock.org/docs/running-standalone/ ⒉运行 java -jar wiremock-standalone-2.2 ...