不要吐槽博主总做这些数论氵题

首先我们看到这种因数问题,果断质因数分解

所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\)

可得\(a^b=p_1^{k_1*b}*p_2^{k_2*b}...*p_m^{k_m*b}\)

考虑因数和,假设数\(a\)只有一个质因子\(p_1\),则因数和为\(\sum_{i=0}^{k_1}{p_1}^i\)

如果有第二个质因子\(p_2\)则因数和为\(\sum_{i=0}^{k_1}({p_1}^i*\sum_{j=0}^{k_2}{p_2}^j)=(\sum_{i=0}^{k_1}{p_1}^i)*(\sum_{j=0}^{k_2}{p_2}^j)\)

以此类推,我们要求的因数之和显然为\(\prod_{i=1}^m \sum_{j=0}^{k_i}{p_i}^j\)

至于后面那一段怎么求,先令\(f_i=\sum_{j=0}^{i}p^j\)

可以发现\(f_{i+1}=\sum_{j=0}^{i+1}p^j=p*(\sum_{j=0}^{i}p^j)+1=p*f_i+1\)

然后就可以偷税的使用矩乘了(如果不会请参考这题)

代码如下

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#define LL long long
#define il inline
#define re register using namespace std;
const LL mod=9901;
il LL rd()
{
re LL x=0,w=1;re char ch;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct mrtx
{
LL a[2][2];
mrtx(){memset(a,0,sizeof(a));}
}a,b;
il mrtx mlt(mrtx a,mrtx b)
{
mrtx c;
for(int i=0;i<=1;i++)
for(int j=0;j<=1;j++)
for(int k=0;k<=1;k++)
c.a[i][j]=(c.a[i][j]+(a.a[i][k]*b.a[k][j])%mod)%mod;
return c;
}
il mrtx ksm(mrtx a,mrtx b,LL bb) //这里直接把转移矩阵乘到初始矩阵上去
{
while(bb)
{
if(bb&1) a=mlt(a,b);
b=mlt(b,b);
bb>>=1;
}
return a;
}
LL p[20][2],tt,n,m,ans=1; int main()
{
n=rd(),m=rd();
int srt=sqrt(n);
for(int i=2;i<=srt;i++)
{
if(n%i!=0) continue;
p[++tt][0]=i;
while(n%i==0) ++p[tt][1],n/=i;
}
if(n>1) p[++tt][0]=n,p[tt][1]=1;
a.a[0][0]=a.a[0][1]=1,b.a[1][0]=b.a[1][1]=1;
for(int i=1;i<=tt;i++)
{
p[i][1]*=m;
b.a[0][0]=p[i][0];
ans=(ans*ksm(a,b,p[i][1]).a[0][0])%mod;
}
printf("%lld\n",ans);
return 0;
}

luogu P1593 因子和的更多相关文章

  1. 洛谷 P1593 因子和

    https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然 ...

  2. 洛谷P1593 因子和

    题目描述 输入两个正整数a和b,求a^b的因子和.结果太大,只要输出它对9901的余数. 输入输出格式 输入格式: 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式: a^b的因 ...

  3. P1593 因子和

    P1593 因子和新算法:#define ni 逆元先质因数分解,(1+p1^1+p1^2...p1^x)*(1+p2^1+p2^2...p2^x)然后套等比数列公式就可以了. #include< ...

  4. luogu 1593 因子和

    因子和 题目描述 输入两个正整数a和b,求\(a^b\)的因子和.结果太大,只要输出它对9901的余数. 解法 基本算数定理,每一个数都可以被分解成一系列的素数的乘积,然后你可以分解出因数了. 如何求 ...

  5. 【Luogu】P1593因子和(唯一分解定理,约数和公式)

    题目链接 首先介绍两个定理. 整数唯一分解定理:任意正整数都有且只有一种方式写出素数因子的乘积表达式. \(A=(p1k1 p2k2 ...... pnkn \) 求这些因子的代码如下 ;i*i< ...

  6. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  7. luogu P3226 [HNOI2012]集合选数

    luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1 ...

  8. [luogu]P3938 斐波那契[数学]

    [luogu]P3938 斐波那契 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚 ...

  9. [luogu]P3939 数颜色[二分]

    [luogu]P3939 数颜色 题目描述 小 C 的兔子不是雪白的,而是五彩缤纷的.每只兔子都有一种颜色,不同的兔子可能有 相同的颜色.小 C 把她标号从 1 到 n 的 n 只兔子排成长长的一排, ...

随机推荐

  1. 用Delphi制作动态菜单 该文章《用Delphi制作动态菜单》

    ---恢复内容开始--- 1.首先,确定动态菜单的数据来源,即要确定动态菜单标题是来自Windows的系统注册表,还是来自一个数据库,或者是来自一个子目录,主要由程序的功能而定.这里假设主窗口名为Ma ...

  2. SESSION和cookie的使用和区别

    PHP中SESSION和cookie的使用和区别 cookie 是一种在远程浏览器端储存数据并以此来跟踪和识别用户的机制. PHP在http协议的头信息里发送cookie, 因此 setcookie( ...

  3. windows编程按小时生成日志文件

    这是一个简单的日志记录方法,为了避免单个日志文件过大,所以每个小时生成一个新的日志文件 注意:g_pLogPath 可以带路径,但是必须手动创建好路径,保证目录存在.而且要详细到log文件名,不能带后 ...

  4. ELK--filebeat详解

    Filebeat提供了几种不同的方式来启用模块: 在modules.d编辑目录中启用模块配置 运行Filebeat 编辑时启用模块 在filebeat.yml文件编辑中启用模块配置 例如,要在 目录中 ...

  5. Js更改样式导致hover效果消失

    [问题来源] 今天做单次倒计时,利用JS更改了button样式之后,再次点击时,发现hover效果消失. 原因: CSS的优先级问题导致 [解决方法] 利用!important提高hover的优先级 ...

  6. 拯救大兵瑞恩 HDU - 4845(状压bfs || 分层最短路)

    1.状压bfs 这个状压体现在key上  我i们用把key状压一下  就能记录到一个点时 已经拥有的key的种类 ban[x1][y1][x2][y1]记录两个点之间的状态 是门 还是墙 还是啥都没有 ...

  7. 洛谷 P4100 [HEOI2013]钙铁锌硒维生素 解题报告

    P4100 [HEOI2013]钙铁锌硒维生素 题目描述 银河队选手名单出来了!小林,作为特聘的营养师,将负责银河队选手参加 宇宙比赛的饮食. 众所周知,前往宇宙的某个星球,通常要花费好长好长的时间, ...

  8. Java:读取系统信息

    com.sun.management.OperatingSystemMXBean mxbean = (com.sun.management.OperatingSystemMXBean) Managem ...

  9. mod(%)之规律(除数与被除数的正负分析)

    首先注意“-9 % 4”,根据运算符优先级,负号运算符优先级大于余数(取模),所以执行的是“(-9) % 4”. 其次 % = mod ,只是在不同地方表示方法不同而已. 被除数无论是正数和负数结果都 ...

  10. poj 3207(2-SAT+SCC)

    传送门:Problem 3207 https://www.cnblogs.com/violet-acmer/p/9769406.html 难点: 题意理解. 题意: 平面上有一个圆,圆上有n个点(分别 ...