numpy库的学习笔记
一、ndarray
1、numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”。
2、ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相同,数组下标从0开始。
3、在numpy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank).
4、从ndarray对象提取任何元素(通过切片)由一个数组标量类型的python对象表示,数组切片得到的是原始数组的视图,所有修改都会直接反映到源数组。如果需要得到的ndarray切片的一份副本,需要进行复制操作,比如arange[5:8].copy()
5、ndarray对象的属性
属性 | 说明 |
.ndim | 秩,即轴的数量或维度的数量 |
.shape | ndarray对象的尺度,对于矩阵m行n列 |
.size | ndarray对象元素的个数,相当于.shape中m*n的值 |
.dtype | ndarray对象的元素类型 |
.itemsize | ndarray对象中每个元素的大小,以字节为单位 |
演示
6、ndarray类的形态操作方法
方法 | 说明 |
ndarray.rashape(n,m) | 不改变数组ndarray,返回一个维度为(m,n)的数组 |
ndarray.resize(new_shape) | 与reshape()作用相同,直接修改数组ndarray |
ndarray.swapaxes(ax1,ax2) | 将数组中n个维度中任意两个维度进行调换 |
ndarray.flatten() | 对数组进行降维,返回一个折叠后的一维数组 |
ndarray,ravel() | 作用同np.flatten(),但是返回数组的一个视图 |
二、numpy库常用的创建数组函数
函数 | 说明 |
np.array([x,y,z],dtype=int) | 从python列表和元组创造数组 |
np.arange(x,y,i) | 创建一个由x到y,以i为步长的数组 |
np.linspace(x,y,n) | 创建一个由x到y,等分成n个元素的数组 |
np.indices((m,n)) | 创建一个m行n列的矩阵 |
np.random.rand(m,n) | 创建一个m行n列的随机数组 |
np.ones((m,n),dtype) | 创建一个m行n列全1的数组,dtype是数据类型 |
np.empty((m,n),dtype) | 创建一个m行n列的全0的数组,dtype是数据类型 |
三、numpy库的算数运算函数
函数 | 说明 |
np.add(x1,x2[,y]) | y=x1+x2 |
np.subtract(x1,x2[,y]) | y=x1-x2 |
np.multiply(x1,x2[,y]) | y=x1*x2 |
np.divide(x1,x2[,y]) | y=x1/x2 |
np.floor_divide(x1,x2[,y]) | y=x1//x2,返回值取整 |
np.negative(x[,y]) | y=-x |
np.power(x1,x2[,y]) | y=x1**x2 |
np.remainder(x1,x2[,y]) | y=x1%x2 |
注意:
这些函数中,输出参数y可选,如果没有指定,将创建并返回一个新的数组保存计算结果;如果指定参数,则将结果保存到参数中。例如,两个数组相加可以简单地写为a+b,而np.add(a,b,a)则表示a+=b
四、numpy库的比较运算函数
函数 | 说明 |
np.equal(x1,x2[,y]) | y=x1=x2 |
np.not_equal(x1,x2[,y]) | y=x1!=x2 |
np.less(x1,x2,[,y]) | y=x1<x2 |
np.less_equal(x1,x2,[,y]) | y=x1<=x2 |
np.greater(x1,x2,[,y]) | y=x1>x2 |
np.greater_equal(x1,x2,[,y]) | y=x1>=x2 |
np.where(condition[x,y]) | 根据给出的条件判断输出x还是y |
注意:numpy库的比较运算函数将返回一个布尔数组,它包含两个数组中对应元素的比较结果,比如
五、numpy库的其他运算函数
函数 | 说明 |
np.abs(x) | 计算基于元素的整型,浮点或复数的绝对值 |
np.sqrt(x) | 计算每个元素的平方根 |
np.squre(x) | 计算每个元素的平方 |
np.sign(x) | 计算每个元素的符号: 1(+),0,-1(-) |
np.ceil(x) | 计算大于或等于每个元素的最小值 |
np.floor(x) | 计算小于或等于每个元素的最大值 |
np.rint(x[,out]) | 圆整,取每个元素为最近的整数,保留数据类型 |
np.exp(x[,out]) | 计算每个元素的指数值 |
np.log(x),np.log10(x),np.log2(x) | 计算自然对数(e),基于10,2的对数,log(1+x) |
numpy库的学习笔记的更多相关文章
- Numpy库的学习(三)
今天我们继续学习一下Numpy库的学习 废话不多说 ,开始讲 比如我们现在想创建一个0-14这样一个15位的数组 可以直接写,但是很麻烦,Numpy中就给我们了一个方便创建的方法 numpy中有一个a ...
- [Python ]小波变化库——Pywalvets 学习笔记
[Python ]小波变化库——Pywalvets 学习笔记 2017年03月20日 14:04:35 SNII_629 阅读数:24776 标签: python库pywavelets小波变换 更多 ...
- Numpy库的学习(五)
今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a ...
- Numpy库的学习(四)
我们今天继续学习一下Numpy库 接着前面几次讲的,Numpy中还有一些标准运算 a = np.arange(3) print(a) print(np.exp(a)) print(np.sqrt(a) ...
- Numpy库的学习(二)
今天来继续学习一下Numpy库的使用 接着昨天的内容继续 在Numpy中,我们如果想要进行一个判断使用“==” 我们来看下面的代码 vector = np.array([5,10,15,20,25]) ...
- Numpy库的学习(一)
今天来学习一下Python库中,支持高级大量的维度数组与矩阵运算的神奇的Numpy库 Numpy同时也对数组运算提供大量的数学函数,对于大量计算运行效率极好 是大量机器学习框架的基础库 废话不多说,直 ...
- 科学计算和可视化(numpy及matplotlib学习笔记)
网上学习资料:https://2d.hep.com.cn/1865445/9 numpy库内容: 函数 描述 np.array([x,y,z],dtype=int) 从Python列表和元组创造数组 ...
- Numpy 和 Matplotlib库的学习笔记
Numpy介绍 一个用python实现的科学计算,包括:1.一个强大的N维数组对象Array:2.比较成熟的(广播)函数库:3.用于整合C/C++和Fortran代码的工具包:4.实用的线性代数.傅里 ...
- 《C标准库》学习笔记整理
简介 <C标准库>书中对 C 标准库中的 15 个头文件的内容进行了详细的介绍,包括各头文件设计的背景知识.头文件中的内容.头文件中定义的函数和变量的使用.实现.测试等. 我学习此书的目的 ...
随机推荐
- G - 土耳其冰淇凌 Gym - 101194D(二分答案 + 贪心检验)
熊猫先生非常喜欢冰淇淋,尤其是冰淇淋塔.一个冰淇淋塔由K个冰淇淋球堆叠成一个塔.为了使塔稳定,下面的冰淇淋球至少要有它上面的两倍大.换句话说,如果冰淇淋球从上到下的尺寸是A0, A1, A2,···, ...
- Spring(一):Spring入门程序和IoC初步理解
本文是按照狂神说的教学视频学习的笔记,强力推荐,教学深入浅出一遍就懂!b站搜索狂神说或点击下面链接 https://space.bilibili.com/95256449?spm_id_from=33 ...
- SQL表的简单操作
创建数据库表,进行增删改查是我们操作数据库的最基础的操作,很简单,熟悉的请关闭,免得让费时间. 1.创建表: sql中创建数值类型字段要根据该字段值的增长情况选择类型: tinyint 占1个字节,长 ...
- NumPy学习2:创建数组
1.使用array创建数组 b = array([2, 3, 4])print bprint b.dtype 2.把序列转化为数组 b = array( [ (1.5,2,3), (4,5,6) ] ...
- Scala——的并行集合
当出现Kafka单个分区数据量很大,但每个分区的数据量很平均的情况时,我们往往采用下面两种方案增加并行度: l 增加Kafka分区数量 l 对拉取过来的数据执行repartition 但是针对这种 ...
- java添加对象成功后想知道当前添加对象的id
我使用的是springboot Mybatis写的项目,结构如下 mapper.xml(以下2个属性必须要有,主键id 一般是自动生成的) mapper.java (注意新增的返回值不需要,一般情况 ...
- EOS基础全家桶(七)合约表操作
简介 本篇我们开始来为后续合约开发做准备了,先来说说EOS内置的系统合约的功能吧,本篇将侧重于合约表数据的查询,这将有利于我们理解EOS的功能,并可以进行必要的数据查询. EOS基础全家桶(七)合约表 ...
- Python线程和协程CPU资源利用率测试
前言介绍 协程 ,又称为微线程,它是实现多任务的另一种方式,只不过是比线程更小的执行单元.因为它自带CPU的上下文,这样只要在合适的时机,我们可以把一个协程切换到另一个协程.通俗的理解: 在一个线程中 ...
- loadrunner post请求
注意:loadrunner参数中的引号,需要自己加"\" post 请求,分为header 和body两个部分处理 header部分比较容易处理,使用函数实现,如web_add_h ...
- tensorflow2.x 报错 Could not load dynamic library 'cudart64_101.dll'
当我们使用 tensorflow 最新版本的时候 ,会出现这样的错误 -- ::] Could not load dynamic library 'cudart64_101.dll'; dlerror ...