一、ndarray

1、numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”。

2、ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相同,数组下标从0开始。

3、在numpy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank).

4、从ndarray对象提取任何元素(通过切片)由一个数组标量类型的python对象表示,数组切片得到的是原始数组的视图,所有修改都会直接反映到源数组。如果需要得到的ndarray切片的一份副本,需要进行复制操作,比如arange[5:8].copy()

5、ndarray对象的属性

属性 说明
.ndim 秩,即轴的数量或维度的数量
.shape ndarray对象的尺度,对于矩阵m行n列
.size ndarray对象元素的个数,相当于.shape中m*n的值
.dtype ndarray对象的元素类型
.itemsize ndarray对象中每个元素的大小,以字节为单位

演示

6、ndarray类的形态操作方法

方法 说明
ndarray.rashape(n,m) 不改变数组ndarray,返回一个维度为(m,n)的数组
ndarray.resize(new_shape) 与reshape()作用相同,直接修改数组ndarray
ndarray.swapaxes(ax1,ax2) 将数组中n个维度中任意两个维度进行调换
ndarray.flatten() 对数组进行降维,返回一个折叠后的一维数组
ndarray,ravel() 作用同np.flatten(),但是返回数组的一个视图

二、numpy库常用的创建数组函数

函数 说明
np.array([x,y,z],dtype=int) 从python列表和元组创造数组
np.arange(x,y,i) 创建一个由x到y,以i为步长的数组
np.linspace(x,y,n) 创建一个由x到y,等分成n个元素的数组
np.indices((m,n)) 创建一个m行n列的矩阵
np.random.rand(m,n) 创建一个m行n列的随机数组
np.ones((m,n),dtype) 创建一个m行n列全1的数组,dtype是数据类型
np.empty((m,n),dtype) 创建一个m行n列的全0的数组,dtype是数据类型

三、numpy库的算数运算函数

函数 说明
np.add(x1,x2[,y]) y=x1+x2
np.subtract(x1,x2[,y]) y=x1-x2
np.multiply(x1,x2[,y]) y=x1*x2
np.divide(x1,x2[,y]) y=x1/x2
np.floor_divide(x1,x2[,y]) y=x1//x2,返回值取整
np.negative(x[,y]) y=-x
np.power(x1,x2[,y]) y=x1**x2
np.remainder(x1,x2[,y]) y=x1%x2

注意:

这些函数中,输出参数y可选,如果没有指定,将创建并返回一个新的数组保存计算结果;如果指定参数,则将结果保存到参数中。例如,两个数组相加可以简单地写为a+b,而np.add(a,b,a)则表示a+=b

四、numpy库的比较运算函数

函数 说明
np.equal(x1,x2[,y]) y=x1=x2
np.not_equal(x1,x2[,y]) y=x1!=x2
np.less(x1,x2,[,y]) y=x1<x2
np.less_equal(x1,x2,[,y]) y=x1<=x2
np.greater(x1,x2,[,y]) y=x1>x2
np.greater_equal(x1,x2,[,y]) y=x1>=x2
np.where(condition[x,y]) 根据给出的条件判断输出x还是y

注意:numpy库的比较运算函数将返回一个布尔数组,它包含两个数组中对应元素的比较结果,比如

五、numpy库的其他运算函数

函数 说明
np.abs(x) 计算基于元素的整型,浮点或复数的绝对值
np.sqrt(x) 计算每个元素的平方根
np.squre(x) 计算每个元素的平方
np.sign(x) 计算每个元素的符号: 1(+),0,-1(-)
np.ceil(x) 计算大于或等于每个元素的最小值
np.floor(x) 计算小于或等于每个元素的最大值
np.rint(x[,out]) 圆整,取每个元素为最近的整数,保留数据类型
np.exp(x[,out]) 计算每个元素的指数值
np.log(x),np.log10(x),np.log2(x) 计算自然对数(e),基于10,2的对数,log(1+x)

numpy库的学习笔记的更多相关文章

  1. Numpy库的学习(三)

    今天我们继续学习一下Numpy库的学习 废话不多说 ,开始讲 比如我们现在想创建一个0-14这样一个15位的数组 可以直接写,但是很麻烦,Numpy中就给我们了一个方便创建的方法 numpy中有一个a ...

  2. [Python ]小波变化库——Pywalvets 学习笔记

    [Python ]小波变化库——Pywalvets 学习笔记 2017年03月20日 14:04:35 SNII_629 阅读数:24776 标签: python库pywavelets小波变换 更多 ...

  3. Numpy库的学习(五)

    今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a ...

  4. Numpy库的学习(四)

    我们今天继续学习一下Numpy库 接着前面几次讲的,Numpy中还有一些标准运算 a = np.arange(3) print(a) print(np.exp(a)) print(np.sqrt(a) ...

  5. Numpy库的学习(二)

    今天来继续学习一下Numpy库的使用 接着昨天的内容继续 在Numpy中,我们如果想要进行一个判断使用“==” 我们来看下面的代码 vector = np.array([5,10,15,20,25]) ...

  6. Numpy库的学习(一)

    今天来学习一下Python库中,支持高级大量的维度数组与矩阵运算的神奇的Numpy库 Numpy同时也对数组运算提供大量的数学函数,对于大量计算运行效率极好 是大量机器学习框架的基础库 废话不多说,直 ...

  7. 科学计算和可视化(numpy及matplotlib学习笔记)

    网上学习资料:https://2d.hep.com.cn/1865445/9 numpy库内容: 函数 描述 np.array([x,y,z],dtype=int) 从Python列表和元组创造数组 ...

  8. Numpy 和 Matplotlib库的学习笔记

    Numpy介绍 一个用python实现的科学计算,包括:1.一个强大的N维数组对象Array:2.比较成熟的(广播)函数库:3.用于整合C/C++和Fortran代码的工具包:4.实用的线性代数.傅里 ...

  9. 《C标准库》学习笔记整理

    简介 <C标准库>书中对 C 标准库中的 15 个头文件的内容进行了详细的介绍,包括各头文件设计的背景知识.头文件中的内容.头文件中定义的函数和变量的使用.实现.测试等. 我学习此书的目的 ...

随机推荐

  1. 1032 Sharing (25分)(数组链表)

    To store English words, one method is to use linked lists and store a word letter by letter. To save ...

  2. 《操作系统》课程笔记(Ch01-导论)

    Ch01 - 导论 操作系统的功能 用户视角:在乎使用方便,不在乎资源利用 系统视角:资源分配器.控制程序 计算机系统的运行 启动:利用固件(Firmware)中的引导程序(Bootstrap Pro ...

  3. JAVA自动化之Junit单元测试框架详解

    一.JUnit概述&配置 1.Junit是什么? Junit是一个Java 编程语言的开源测试框架,用于编写和运行测试.官网 地址:https://junit.org/junit4/ 2.Ma ...

  4. String 对象-->charAt() 方法

    1.定义和用法 charAt() 方法获取指定下标的字符,下标从0开始 语法: string.charAt(index) 参数: index:指定的下标 举例:获取下标为2的字符 var str = ...

  5. Spire.Cloud 私有化部署教程(二)- Ubuntu 18.04 系统

    本教程主要介绍如何在Ubuntu 18.04系统上实现Spire.Cloud私有化部署.CentOS 7系统部署请参考 这篇教程. 详细步骤如下: 一.环境配置 1.关闭防火墙 1)首先查看防火墙状态 ...

  6. Spring Cloud 系列之 Consul 注册中心(二)

    本篇文章为系列文章,未读第一集的同学请猛戳这里:Spring Cloud 系列之 Consul 注册中心(一) 本篇文章讲解 Consul 集群环境的搭建. Consul 集群 上图是一个简单的 Co ...

  7. Chrome浏览器架构

    通用浏览器架构 它可以是一个具有许多不同线程的进程,也可以是具有几个通过IPC进行通信的多个线程的进程. 一个具有许多不同线程的进程 通过IPC进行通信的多个线程的进程 注意 这些不同的体系结构是实现 ...

  8. defer使用小结

    defer 前言 defer的定义 defer执行的规则 为什么需要defer defer进阶 作为匿名函数 作为函数参数 defer命令执行的时机 defer配合recover 总结 参考 defe ...

  9. AJ学IOS(09)UI之UIScrollView代理触摸实现_图片缩放

    AJ分享,必须精品 先看效果 代码 // // NYViewController.m // 05-放大缩小图片UIScrollView // // Created by apple on 15-3-2 ...

  10. Python之利用jieba库做词频统计且制作词云图

    一.环境以及注意事项 1.windows10家庭版 python 3.7.1 2.需要使用到的库 wordcloud(词云),jieba(中文分词库),安装过程不展示 3.注意事项:由于wordclo ...