numpy库的学习笔记
一、ndarray
1、numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”。
2、ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相同,数组下标从0开始。
3、在numpy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank).
4、从ndarray对象提取任何元素(通过切片)由一个数组标量类型的python对象表示,数组切片得到的是原始数组的视图,所有修改都会直接反映到源数组。如果需要得到的ndarray切片的一份副本,需要进行复制操作,比如arange[5:8].copy()
5、ndarray对象的属性
属性 | 说明 |
.ndim | 秩,即轴的数量或维度的数量 |
.shape | ndarray对象的尺度,对于矩阵m行n列 |
.size | ndarray对象元素的个数,相当于.shape中m*n的值 |
.dtype | ndarray对象的元素类型 |
.itemsize | ndarray对象中每个元素的大小,以字节为单位 |
演示
6、ndarray类的形态操作方法
方法 | 说明 |
ndarray.rashape(n,m) | 不改变数组ndarray,返回一个维度为(m,n)的数组 |
ndarray.resize(new_shape) | 与reshape()作用相同,直接修改数组ndarray |
ndarray.swapaxes(ax1,ax2) | 将数组中n个维度中任意两个维度进行调换 |
ndarray.flatten() | 对数组进行降维,返回一个折叠后的一维数组 |
ndarray,ravel() | 作用同np.flatten(),但是返回数组的一个视图 |
二、numpy库常用的创建数组函数
函数 | 说明 |
np.array([x,y,z],dtype=int) | 从python列表和元组创造数组 |
np.arange(x,y,i) | 创建一个由x到y,以i为步长的数组 |
np.linspace(x,y,n) | 创建一个由x到y,等分成n个元素的数组 |
np.indices((m,n)) | 创建一个m行n列的矩阵 |
np.random.rand(m,n) | 创建一个m行n列的随机数组 |
np.ones((m,n),dtype) | 创建一个m行n列全1的数组,dtype是数据类型 |
np.empty((m,n),dtype) | 创建一个m行n列的全0的数组,dtype是数据类型 |
三、numpy库的算数运算函数
函数 | 说明 |
np.add(x1,x2[,y]) | y=x1+x2 |
np.subtract(x1,x2[,y]) | y=x1-x2 |
np.multiply(x1,x2[,y]) | y=x1*x2 |
np.divide(x1,x2[,y]) | y=x1/x2 |
np.floor_divide(x1,x2[,y]) | y=x1//x2,返回值取整 |
np.negative(x[,y]) | y=-x |
np.power(x1,x2[,y]) | y=x1**x2 |
np.remainder(x1,x2[,y]) | y=x1%x2 |
注意:
这些函数中,输出参数y可选,如果没有指定,将创建并返回一个新的数组保存计算结果;如果指定参数,则将结果保存到参数中。例如,两个数组相加可以简单地写为a+b,而np.add(a,b,a)则表示a+=b
四、numpy库的比较运算函数
函数 | 说明 |
np.equal(x1,x2[,y]) | y=x1=x2 |
np.not_equal(x1,x2[,y]) | y=x1!=x2 |
np.less(x1,x2,[,y]) | y=x1<x2 |
np.less_equal(x1,x2,[,y]) | y=x1<=x2 |
np.greater(x1,x2,[,y]) | y=x1>x2 |
np.greater_equal(x1,x2,[,y]) | y=x1>=x2 |
np.where(condition[x,y]) | 根据给出的条件判断输出x还是y |
注意:numpy库的比较运算函数将返回一个布尔数组,它包含两个数组中对应元素的比较结果,比如
五、numpy库的其他运算函数
函数 | 说明 |
np.abs(x) | 计算基于元素的整型,浮点或复数的绝对值 |
np.sqrt(x) | 计算每个元素的平方根 |
np.squre(x) | 计算每个元素的平方 |
np.sign(x) | 计算每个元素的符号: 1(+),0,-1(-) |
np.ceil(x) | 计算大于或等于每个元素的最小值 |
np.floor(x) | 计算小于或等于每个元素的最大值 |
np.rint(x[,out]) | 圆整,取每个元素为最近的整数,保留数据类型 |
np.exp(x[,out]) | 计算每个元素的指数值 |
np.log(x),np.log10(x),np.log2(x) | 计算自然对数(e),基于10,2的对数,log(1+x) |
numpy库的学习笔记的更多相关文章
- Numpy库的学习(三)
今天我们继续学习一下Numpy库的学习 废话不多说 ,开始讲 比如我们现在想创建一个0-14这样一个15位的数组 可以直接写,但是很麻烦,Numpy中就给我们了一个方便创建的方法 numpy中有一个a ...
- [Python ]小波变化库——Pywalvets 学习笔记
[Python ]小波变化库——Pywalvets 学习笔记 2017年03月20日 14:04:35 SNII_629 阅读数:24776 标签: python库pywavelets小波变换 更多 ...
- Numpy库的学习(五)
今天继续学习一下Numpy库,废话不多说,整起走 先说下Numpy中,经常会犯错的地方,就是数据的复制 这个问题不仅仅是在numpy中有,其他地方也同样会出现 import numpy as np a ...
- Numpy库的学习(四)
我们今天继续学习一下Numpy库 接着前面几次讲的,Numpy中还有一些标准运算 a = np.arange(3) print(a) print(np.exp(a)) print(np.sqrt(a) ...
- Numpy库的学习(二)
今天来继续学习一下Numpy库的使用 接着昨天的内容继续 在Numpy中,我们如果想要进行一个判断使用“==” 我们来看下面的代码 vector = np.array([5,10,15,20,25]) ...
- Numpy库的学习(一)
今天来学习一下Python库中,支持高级大量的维度数组与矩阵运算的神奇的Numpy库 Numpy同时也对数组运算提供大量的数学函数,对于大量计算运行效率极好 是大量机器学习框架的基础库 废话不多说,直 ...
- 科学计算和可视化(numpy及matplotlib学习笔记)
网上学习资料:https://2d.hep.com.cn/1865445/9 numpy库内容: 函数 描述 np.array([x,y,z],dtype=int) 从Python列表和元组创造数组 ...
- Numpy 和 Matplotlib库的学习笔记
Numpy介绍 一个用python实现的科学计算,包括:1.一个强大的N维数组对象Array:2.比较成熟的(广播)函数库:3.用于整合C/C++和Fortran代码的工具包:4.实用的线性代数.傅里 ...
- 《C标准库》学习笔记整理
简介 <C标准库>书中对 C 标准库中的 15 个头文件的内容进行了详细的介绍,包括各头文件设计的背景知识.头文件中的内容.头文件中定义的函数和变量的使用.实现.测试等. 我学习此书的目的 ...
随机推荐
- 1032 Sharing (25分)(数组链表)
To store English words, one method is to use linked lists and store a word letter by letter. To save ...
- 《操作系统》课程笔记(Ch01-导论)
Ch01 - 导论 操作系统的功能 用户视角:在乎使用方便,不在乎资源利用 系统视角:资源分配器.控制程序 计算机系统的运行 启动:利用固件(Firmware)中的引导程序(Bootstrap Pro ...
- JAVA自动化之Junit单元测试框架详解
一.JUnit概述&配置 1.Junit是什么? Junit是一个Java 编程语言的开源测试框架,用于编写和运行测试.官网 地址:https://junit.org/junit4/ 2.Ma ...
- String 对象-->charAt() 方法
1.定义和用法 charAt() 方法获取指定下标的字符,下标从0开始 语法: string.charAt(index) 参数: index:指定的下标 举例:获取下标为2的字符 var str = ...
- Spire.Cloud 私有化部署教程(二)- Ubuntu 18.04 系统
本教程主要介绍如何在Ubuntu 18.04系统上实现Spire.Cloud私有化部署.CentOS 7系统部署请参考 这篇教程. 详细步骤如下: 一.环境配置 1.关闭防火墙 1)首先查看防火墙状态 ...
- Spring Cloud 系列之 Consul 注册中心(二)
本篇文章为系列文章,未读第一集的同学请猛戳这里:Spring Cloud 系列之 Consul 注册中心(一) 本篇文章讲解 Consul 集群环境的搭建. Consul 集群 上图是一个简单的 Co ...
- Chrome浏览器架构
通用浏览器架构 它可以是一个具有许多不同线程的进程,也可以是具有几个通过IPC进行通信的多个线程的进程. 一个具有许多不同线程的进程 通过IPC进行通信的多个线程的进程 注意 这些不同的体系结构是实现 ...
- defer使用小结
defer 前言 defer的定义 defer执行的规则 为什么需要defer defer进阶 作为匿名函数 作为函数参数 defer命令执行的时机 defer配合recover 总结 参考 defe ...
- AJ学IOS(09)UI之UIScrollView代理触摸实现_图片缩放
AJ分享,必须精品 先看效果 代码 // // NYViewController.m // 05-放大缩小图片UIScrollView // // Created by apple on 15-3-2 ...
- Python之利用jieba库做词频统计且制作词云图
一.环境以及注意事项 1.windows10家庭版 python 3.7.1 2.需要使用到的库 wordcloud(词云),jieba(中文分词库),安装过程不展示 3.注意事项:由于wordclo ...