关于图的几个概念定义:

  • 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图。
  • 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图。
  • 连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。
  • 生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。
  • 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。

下面介绍两种求最小生成树算法

1.Kruskal算法

此算法可以称为“加边法”,初始最小生成树边数为0,每迭代一次就选择一条满足条件的最小代价边,加入到最小生成树的边集合里。

  1. 把图中的所有边按代价从小到大排序;
  2. 把图中的n个顶点看成独立的n棵树组成的森林;
  3. 按权值从小到大选择边,所选的边连接的两个顶点ui,viui,vi,应属于两颗不同的树,则成为最小生成树的一条边,并将这两颗树合并作为一颗树。
  4. 重复(3),直到所有顶点都在一颗树内或者有n-1条边为止。

2. Prim算法

此算法可以称为“加点法”,每次迭代选择代价最小的边对应的点,加入到最小生成树中。算法从某一个顶点s开始,逐渐长大覆盖整个连通网的所有顶点。

  1. 图的所有顶点集合为VV;初始令集合u={s},v=V−uu={s},v=V−u;
  2. 在两个集合u,vu,v能够组成的边中,选择一条代价最小的边(u0,v0)(u0,v0),加入到最小生成树中,并把v0v0并入到集合u中。
  3. 重复上述步骤,直到最小生成树有n-1条边或者n个顶点为止。

由于不断向集合u中加点,所以最小代价边必须同步更新;需要建立一个辅助数组closedge,用来维护集合v中每个顶点与集合u中最小代价边信息,:

struct
{
char vertexData //表示u中顶点信息
UINT lowestcost //最小代价
}closedge[vexCounts]

3. 完整代码

/************************************************************************
CSDN 勿在浮沙筑高台 http://blog.csdn.net/luoshixian099算法导论--最小生成树(Prim、Kruskal)2016年7月14日
************************************************************************/
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
#define INFINITE 0xFFFFFFFF
#define VertexData unsigned int //顶点数据
#define UINT unsigned int
#define vexCounts 6 //顶点数量
char vextex[] = { 'A', 'B', 'C', 'D', 'E', 'F' };
struct node
{
VertexData data;
unsigned int lowestcost;
}closedge[vexCounts]; //Prim算法中的辅助信息
typedef struct
{
VertexData u;
VertexData v;
unsigned int cost; //边的代价
}Arc; //原始图的边信息
void AdjMatrix(unsigned int adjMat[][vexCounts]) //邻接矩阵表示法
{
for (int i = 0; i < vexCounts; i++) //初始化邻接矩阵
for (int j = 0; j < vexCounts; j++)
{
adjMat[i][j] = INFINITE;
}
adjMat[0][1] = 6; adjMat[0][2] = 1; adjMat[0][3] = 5;
adjMat[1][0] = 6; adjMat[1][2] = 5; adjMat[1][4] = 3;
adjMat[2][0] = 1; adjMat[2][1] = 5; adjMat[2][3] = 5; adjMat[2][4] = 6; adjMat[2][5] = 4;
adjMat[3][0] = 5; adjMat[3][2] = 5; adjMat[3][5] = 2;
adjMat[4][1] = 3; adjMat[4][2] = 6; adjMat[4][5] = 6;
adjMat[5][2] = 4; adjMat[5][3] = 2; adjMat[5][4] = 6;
}
int Minmum(struct node * closedge) //返回最小代价边
{
unsigned int min = INFINITE;
int index = -1;
for (int i = 0; i < vexCounts;i++)
{
if (closedge[i].lowestcost < min && closedge[i].lowestcost !=0)
{
min = closedge[i].lowestcost;
index = i;
}
}
return index;
}
void MiniSpanTree_Prim(unsigned int adjMat[][vexCounts], VertexData s)
{
for (int i = 0; i < vexCounts;i++)
{
closedge[i].lowestcost = INFINITE;
}
closedge[s].data = s; //从顶点s开始
closedge[s].lowestcost = 0;
for (int i = 0; i < vexCounts;i++) //初始化辅助数组
{
if (i != s)
{
closedge[i].data = s;
closedge[i].lowestcost = adjMat[s][i];
}
}
for (int e = 1; e <= vexCounts -1; e++) //n-1条边时退出
{
int k = Minmum(closedge); //选择最小代价边
cout << vextex[closedge[k].data] << "--" << vextex[k] << endl;//加入到最小生成树
closedge[k].lowestcost = 0; //代价置为0
for (int i = 0; i < vexCounts;i++) //更新v中顶点最小代价边信息
{
if ( adjMat[k][i] < closedge[i].lowestcost)
{
closedge[i].data = k;
closedge[i].lowestcost = adjMat[k][i];
}
}
}
}
void ReadArc(unsigned int adjMat[][vexCounts],vector<Arc> &vertexArc) //保存图的边代价信息
{
Arc * temp = NULL;
for (unsigned int i = 0; i < vexCounts;i++)
{
for (unsigned int j = 0; j < i; j++)
{
if (adjMat[i][j]!=INFINITE)
{
temp = new Arc;
temp->u = i;
temp->v = j;
temp->cost = adjMat[i][j];
vertexArc.push_back(*temp);
}
}
}
}
bool compare(Arc A, Arc B)
{
return A.cost < B.cost ? true : false;
}
bool FindTree(VertexData u, VertexData v,vector<vector<VertexData> > &Tree)
{
unsigned int index_u = INFINITE;
unsigned int index_v = INFINITE;
for (unsigned int i = 0; i < Tree.size();i++) //检查u,v分别属于哪颗树
{
if (find(Tree[i].begin(), Tree[i].end(), u) != Tree[i].end())
index_u = i;
if (find(Tree[i].begin(), Tree[i].end(), v) != Tree[i].end())
index_v = i;
} if (index_u != index_v) //u,v不在一颗树上,合并两颗树
{
for (unsigned int i = 0; i < Tree[index_v].size();i++)
{
Tree[index_u].push_back(Tree[index_v][i]);
}
Tree[index_v].clear();
return true;
}
return false;
}
void MiniSpanTree_Kruskal(unsigned int adjMat[][vexCounts])
{
vector<Arc> vertexArc;
ReadArc(adjMat, vertexArc);//读取边信息
sort(vertexArc.begin(), vertexArc.end(), compare);//边按从小到大排序
vector<vector<VertexData> > Tree(vexCounts); //6棵独立树
for (unsigned int i = 0; i < vexCounts; i++)
{
Tree[i].push_back(i); //初始化6棵独立树的信息
}
for (unsigned int i = 0; i < vertexArc.size(); i++)//依次从小到大取最小代价边
{
VertexData u = vertexArc[i].u;
VertexData v = vertexArc[i].v;
if (FindTree(u, v, Tree))//检查此边的两个顶点是否在一颗树内
{
cout << vextex[u] << "---" << vextex[v] << endl;//把此边加入到最小生成树中
}
}
} int main()
{
unsigned int adjMat[vexCounts][vexCounts] = { 0 };
AdjMatrix(adjMat); //邻接矩阵
cout << "Prim :" << endl;
MiniSpanTree_Prim(adjMat,0); //Prim算法,从顶点0开始.
cout << "-------------" << endl << "Kruskal:" << endl;
MiniSpanTree_Kruskal(adjMat);//Kruskal算法
return 0;
}

最小生成树的两种方法(Kruskal算法和Prim算法)的更多相关文章

  1. 最小生成树(次小生成树)(最小生成树不唯一) 模板:Kruskal算法和 Prim算法

    Kruskal模板:按照边权排序,开始从最小边生成树 #include<algorithm> #include<stdio.h> #include<string.h> ...

  2. 求最小生成树——Kruskal算法和Prim算法

    给定一个带权值的无向图,要求权值之和最小的生成树,常用的算法有Kruskal算法和Prim算法.这两个算法其实都是贪心思想的使用,但又能求出最优解.(代码借鉴http://blog.csdn.net/ ...

  3. 最小生成树之Kruskal算法和Prim算法

    依据图的深度优先遍历和广度优先遍历,能够用最少的边连接全部的顶点,并且不会形成回路. 这样的连接全部顶点并且路径唯一的树型结构称为生成树或扩展树.实际中.希望产生的生成树的全部边的权值和最小,称之为最 ...

  4. Algorithm --> Kruskal算法和Prim算法

    最小生成树之Kruskal算法和Prim算法 Kruskal多用于稀疏图,prim多用于稠密图. 根据图的深度优先遍历和广度优先遍历,可以用最少的边连接所有的顶点,而且不会形成回路.这种连接所有顶点并 ...

  5. 最小生成数kruskal算法和prim算法

    定义 连通图:在无向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该无向图为连通图. 强连通图:在有向图中,若任意两个顶点vivi与vjvj都有路径相通,则称该有向图为强连通图. 连通网:在 ...

  6. 贪心算法-最小生成树Kruskal算法和Prim算法

    Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...

  7. 两种方法实现Python二分查找算法

    两种方法实现Python二分查找算法   一. ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 arr=[1,3,6,9,10,20,30] def findnumber( ...

  8. FIFO调度算法和LRU算法

    一.理论 FIFO:先进先出调度算法 LRU:最近最久未使用调度算法 两者都是缓存调度算法,经常用作内存的页面置换算法. 打一个比方,帮助你理解.你有很多的书,比如说10000本.由于你的书实在太多了 ...

  9. Redis中持久化的两种方法详解

    Redis提供了两种不同的持久化方法来将数据存储到硬盘里面.一种方法叫快照(snapshotting),它可以将存在于某一时刻的所有数据都写入硬盘里;另一种方法教只追加文件(append-only f ...

随机推荐

  1. hadoop启动报错处理

    1.      hadoop启动报错 1.1.    问题1 util.NativeCodeLoader: Unable to load native-hadoop library for your ...

  2. Maven打包项目失败;报错:Failed to execute goal org.apache.maven.plugins:maven-war-plugin:2.1.1:war (default-war) on project Hello: Error assembling WAR: webxml attribute is required (or pre-existing WEB-INF/we

    报错信息: E:\MIKEY\mikey\HTML5\TestMaven_01>mvn package [INFO] Scanning for projects... [INFO] [INFO] ...

  3. Struts笔记一

    Struts 概念: 是一个MVC框架: Servlet的缺点 1.在web.xml中文件中需要配置很多行代码,维护起来很不方便呢,不利于团队合作. 2.一个servlet的入口只有一个doPost或 ...

  4. 使用tag标签是SEO优化的重要性是什么?

    使用tag标签是SEO优化的重要性是什么? tag标签是一种SEO技术,在网站优化的过程中,更准确.更具体地用关键词对文章进行分类,对SEO优化具有重要的作用. 但是,很多新人站长在发表文章时不太注意 ...

  5. Redis 事务在 SpringBoot 中的应用 (io.lettuce.core.RedisCommandExecutionException: ERR EXEC without MULTI)

    我们在 SpringBoot 中使用 Redis 时,会引入如下的 redis starter <dependency> <groupId>org.springframewor ...

  6. 使用display inline-block 布局时,出现的间距问题的解决办法和相关说明

    在CSS中,块级对象元素会单独占一行显示,多个block元素会各自新起一行.而内联对象元素前后不会产生换行,一系列inline元素都在一行内显示,直到该行排满. 使用 display inline-b ...

  7. Linux centos7 LAMP架构介绍、 MySQL、MariaDB介绍、MySQL安装

    一.LAMP架构介绍 为Linux+Apache(httpd)+MySQL+PHP简写,把后三者安装在Linux Apache是最常用的的web服务软件,MySQL为小型的数据库存储软件,PHP为脚本 ...

  8. 2 (mysql实战) 日志系统

    前面我们系统了解了一个查询语句的执行流程,并介绍了执行过程中涉及的处理模块.相信你还记得,一条查询语句的执行过程一般是经过连接器.分析器.优化器.执行器等功能模块,最后到达存储引擎. 那么,一条更新语 ...

  9. 用C语言写一个Helloworld_实现第一步编译运行

    编写第一个hello world 创建helloworld.c // 程序头文件 #include <stdio.h> // 主入口函数 int main(int arc, char* a ...

  10. (转)jquery.validate插件的使用

    JQuery Validate使用总结:一.导入js库<script src="../js/jquery.js" type="text/javascript&quo ...