题意:输入两个非负整数a、b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负整数i,f(i + 2) = f(i + 1) + f(i)。

分析:

1、对于某个n取余的斐波那契序列总是有周期的,求出每个取值的n下的斐波那契序列和周期。

2、ab对T[n]取余,即可确定对n取余的斐波那契序列中f(ab)的位置。

#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b) {
if(fabs(a - b) < eps) return 0;
return a < b ? -1 : 1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 1000 + 10;
const int MAXT = 10000 + 10;
using namespace std;
vector<int> v[MAXN];
int T[MAXN];//周期
void init(){
for(int i = 2; i <= 1000; ++i){
v[i].push_back(0);
v[i].push_back(1);
for(int j = 2; ; ++j){
v[i].push_back((v[i][j - 1] + v[i][j - 2]) % i);
if(v[i][j] == 1 && v[i][j - 1] == 0){
T[i] = j - 1;
break;
}
}
}
}
ULL Q_POW(ULL a, ULL b, int n){
ULL ans = 1ULL;
ULL tmp = a;
while(b){
if(b & 1){
ans = (ans * tmp) % n;
}
tmp = (tmp * tmp) % n;
b >>= 1;
}
return ans;
}
int main(){
int N;
scanf("%d", &N);
init();
while(N--){
ULL a, b, n;
scanf("%llu%llu%llu", &a, &b, &n);
if(a == 0 || n == 1){
printf("0\n");
continue;
}
ULL ans = Q_POW(a % T[n], b, T[n]);
printf("%d\n", v[n][ans]);
}
return 0;
}

  

UVA - 11582 Colossal Fibonacci Numbers! (巨大的斐波那契数!)的更多相关文章

  1. UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

    大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵 ...

  2. UVa #11582 Colossal Fibonacci Numbers!

    巨大的斐波那契数 The i'th Fibonacci number f (i) is recursively defined in the following way: f (0) = 0 and  ...

  3. UVA 11582 Colossal Fibonacci Numbers!【数学】

    大一刚开始接触ACM就买了<算法竞赛入门经典>这本书,当时只能看懂前几章,而且题目也没做,粗鄙地以为这本书不适合自己.等到现在快大三了再回过头来看,发现刘老师还是很棒的! 扯远了... 题 ...

  4. UVA 11582 Colossal Fibonacci Numbers(数学)

    Colossal Fibonacci Numbers 想先说下最近的状态吧,已经考完试了,这个暑假也应该是最后刷题的暑假了,打完今年acm就应该会退了,但是还什么都不会呢? +_+ 所以这个暑假,一定 ...

  5. UVa 11582 Colossal Fibonacci Numbers! 紫书

    思路是按紫书上说的来. 参考了:https://blog.csdn.net/qwsin/article/details/51834161  的代码: #include <cstdio> # ...

  6. UVA 11582 Colossal Fibonacci Numbers!(循环节打表+幂取模)

    题目链接:https://cn.vjudge.net/problem/UVA-11582 /* 问题 输入a,b,n(0<a,b<2^64(a and bwill not both be ...

  7. UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】

    题目链接:Uva 11582 [vjudge] watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fil ...

  8. UVa 11582 - Colossal Fibonacci Numbers!(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. [Swift]LeetCode509. 斐波那契数 | Fibonacci Number

    The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...

随机推荐

  1. MySQL 常用SQL 汇总

    1.查看当前应用连接,连接数突增排查 select user,SUBSTRING_INDEX(host,':',1) as ip , count(*) as count,db from informa ...

  2. Core data 如何查看ObjectId

    ObjectId是Core Data 为每一个数据对象提供的唯一ID标识,获取ObjectID.并打印的方法如下: 步骤: 1. 获取ManagedObject 2. ManagedObject -& ...

  3. python符号//、%和/运算

    a = 9 print('这是%运算的结果'+str(a%2)) print('这是//运算的结果'+str(a//2)) print('这是/运算的结果'+str(a/2))运算结果为 这是%运算的 ...

  4. 【LeetCode】113. 路径总和 II

    题目 给定一个二叉树和一个目标和,找到所有从根节点到叶子节点路径总和等于给定目标和的路径. 说明: 叶子节点是指没有子节点的节点. 示例: 给定如下二叉树,以及目标和 sum = 22, 5 / \ ...

  5. P1059 C语言竞赛

    P1059 C语言竞赛 转跳点:

  6. Python测试进阶——(3)编写Python程序监控计算机的服务是否正常运行

    用python写了个简单的监控进程的脚本,当发现进程消失的时候,立即调用服务,开启服务. 脚本的工作原理是这样的:脚本读取配置文件,读取预先配置好的调用系统服务的路径和所要监控的服务在进程管理器中的进 ...

  7. install正常,deploy上传jar失败致使打包失败

    [INFO] Scanning for projects...[INFO] [INFO] ------------------------------------------------------- ...

  8. bzoj 4754: [Jsoi2016]独特的树叶

    不得不说这是神题. %%%   http://blog.csdn.net/samjia2000/article/details/51762811 #include <cstdio> #in ...

  9. linux测试网速

    wget https://raw.githubusercontent.com/sivel/speedtest-cli/master/speedtest.py python speedtest.py D ...

  10. Selenium -- ActionChains().move_by_offset() 卡顿的解决方法

    测试运行时间 运行时间 发现每次0.5秒,此时需要修改默认的时间 打开Python安装目录下的Lib\site-packages\selenium\webdriver\common\actions\p ...